首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selective laser melting is a laser‐based additive manufacturing process applying layer manufacturing technology and is used to produce dense parts from metallic powders. The application of selective laser melting on carbon steels is still limited due to difficulties arising from carbon content. This experimental investigation aims at gaining an understanding of the application of the process on ultra high carbon steel, which is a special alloy with remarkable structural properties suitable for different industrial applications. The feedstock ultra high carbon steel (2.1% C) powder, 20 μm to 106 μm was prepared by water atomizing technique. This powder was used for the selective laser melting to build specimens 10×10×40 mm in dimensions. To decrease the thermal stresses during layer by layer building, laser scanning was done through 5×5 mm random island patterns while layer thickness was 30 μm. Laser beam diameter, maximum power output, layer thickness and scan speed range were 0.2 mm, 100 W, 30 μm and 50–200 mm/s respectively. The process was done inside high purity nitrogen environment, with less than 0.5% oxygen content. The results illustrate the influence of scan speed from 50 to 200 mm/s on product geometry and dimensions, surface roughness, internal porosity and cracks, microstructure and surface hardness. The effect of post heat treatment by heating and holding for one hour (annealing) at different temperatures of 700°C, 750°C, 950°C is studied. The results indicate that selective laser melting is able to produce near to 95% density of ultra high carbon steel parts with acceptable geometry and surface quality. Porosity cracks, and microstructure formed during the process could be controlled through proper selection of process parameters and post heat treatment. Industrial ultra high carbon steel products can be rapidly fabricated by selective laser melting.  相似文献   

2.
目的 用激光熔化沉积法制备Co Cr Fe Ni Mn系高熵合金,以得出最优成型方案。方法 通过正交试验方法,以沉积层的显微硬度为评价指标,分析激光功率、激光扫描速度和送粉速度对沉积层成型质量的影响程度,并得出激光增材制造的最佳工艺组合。结果 当激光功率超过2 000 W时,沉积层表面开始出现烧蚀现象,沉积层表面出现波纹,熔池宽度不均匀;当激光扫描速度为5、7 mm/s时,沉积层相对较均匀,表面平坦;当送粉速度为0.7 r/min时,送入金属粉末的量的增加使沉积层体积增大,宽度变均匀。结论 最佳工艺参数为:激光功率P=2 000 W、扫描速度Vg=7mm/s、送粉速度Vf=0.7r/min。多道沉积时,搭接率为50%其成型性最优,制备得到的材料抗拉强度为453.7 MPa,伸长率为27.5%。  相似文献   

3.
镁合金作为最轻的金属结构材料,在汽车制造、生物医疗等领域具有极大的应用潜力。激光选区熔化成形镁合金具有高效的制备性能、良好的成分均匀性、优异的力学性能和耐腐蚀性能,因此激光选区熔化成为一种重要的镁合金制备和改性方法。对近几年激光选区熔化镁合金的研究进展进行了综述,从激光工艺参数(激光类型、体能量密度、激光功率、扫描速度、扫描模式、层厚、扫描间距、气氛控制与进粉速度)和粉体状态(粉末形状、粒径分布、粉末对激光束能量吸收率、粉末化学成分)2个方面讨论了该工艺的关键技术;按照纯镁、非稀土镁合金体系、稀土镁合金体系的分类,对激光选区熔化成形镁及镁合金的致密度与微观结构、力学性能与耐腐蚀性能进行了总结;分析了工艺参数与合金成分两方面对该工艺成形镁合金缺陷的影响。为减少激光选区熔化成形镁合金缺陷、均匀化晶粒、溶解硬脆二次相或析出强化相进而改善合金的结构与性能,许多研究对激光选区熔化成形镁合金进行了热等静压、固溶热处理和时效热处理,总结了上述处理方式对AZ体系、WE体系与Mg-Gd体系镁合金的改善效果。最后展望了激光选区熔化成形镁及镁合金在各领域的应用前景与未来可以进行研究的方向。  相似文献   

4.
It is possible to realize surface alloys by laser melting an electroless nickel layer containing chromium carbide particles predeposited on a mild steel substrate. By this way the surface alloy is expected to have not only a high nickel content but also an important chromium content in order to improve the corrosion resistance. The presence of chromium in solid solution results from the dissolution or melting of the carbide particles. Typical laser solidification microstructures are obtained. Dendrites consist of an austenitic Fe-Ni-Cr solid solution and interdendritic regions are constituted by an eutectic mixture containing the same austenitic solid solution and complex Fe, Ni, Cr carbides and phosphides. In comparison with a surface alloy obtained by laser melting of an electroless nickel layer without carbide particles, the corrosion resistance was slightly improved in saline aqueous solutions. The limited effect was due to the fact that the final chromium content in the present experimental conditions was not as high as that initially expected.  相似文献   

5.
Overhanging and floating layers which are introduced during the build in selective laser melting (SLM) process are usually associated with high temperature gradients and thermal stresses. As there is no underlying solid material, less heat is dissipated to the powder bed and the melted layer is free to deform resulting undesired effects such as shrinkage and crack. This study uses three-dimensional finite element simulation to investigate the temperature and stress fields in single 316L stainless steel layers built on the powder bed without support in SLM. A non-linear transient model based on sequentially coupled thermo-mechanical field analysis code was developed in ANSYS parametric design language (APDL). It is found that the predicted length of the melt pool increases at higher scan speed while both width and depth of the melt pool decreases. The cyclic melting and cooling rates in the scanned tracks result high VonMises stresses in the consolidated tracks of the layer.  相似文献   

6.
Be addition make the oxide film formed on the molten magnesium alloy denser and tougher, thus the burning of the Mg during melting was suppressed. AES was employed to study the composition of the oxide film growing on the surface of the molten Mg-9Al-0.5Zn-0.3Be alloy. It was suggested that the surface oxide film could be divided to two layers: the outer MgO layer and the inner mixed layer consisting of MgO and BeO. Both experimental results and theory analysis indicated that the outer layer grew under parabolic law and the thickness almost kept unchanged during the steady growing state for the inner layer.  相似文献   

7.
The present study aims at development of TiB dispersed α-Ti matrix composite by laser melting of Ti-2 wt.% B alloy powder (of particle size ranging from 50-100 μm) using a high power diode laser with argon shroud and depositing the molten alloy on a Ti-6Al-4 V substrate in a layer by layer fashion (up to a maximum of 5 layers were built). Followed by direct laser cladding, the characteristics and mechanical properties of the clad layer were investigated in details. Laser cladding led to formation of TiB dispersed α-Ti matrix composite with an average microhardness of 290 VHN to 500 VHN for different conditions of lasing. The average Young's modulus was considerably improved to 155-165 GPa.  相似文献   

8.
采用优化的SLM成形参数,用激光选区熔化(SLM)增材制造技术制备了三维Ni-Cu合金.使用三维Ni-Cu合金基底材料用化学气相沉积法(CVD)制备Ni-Cu合金/石墨烯复合材料,研究了 CVD法生长反应温度对石墨烯结构的影响并分析其原因.结果表明,石墨烯层的厚度随着反应温度的提高而减小.与未生长石墨烯的样品相比,在1...  相似文献   

9.
The surface oxidation of Ni/Ti bilayer, deposited on silicon substrate, affected by picosecond Nd: YAG laser radiation has been investigated. Fluence close to the target ablation threshold and multi-pulse laser irradiation regime were applied. Changes in the chemical composition of the formed surface oxide layer were studied by Elastic Recoil Detection Analysis (ERDA) and X-ray photoelectron spectroscopy (XPS). Morphological features analysis, at the oxide surface layer, was monitored, too. Laser modification as-deposited (Ni/Ti)/Si sample with 10 pulses induces a progressed interaction between Ni and Ti layers with the initial surface oxidation and formation of NiTi alloy phase. Progressed intermixing of components was achieved for the irradiation with 50 and more pulses, when all components were quite uniformly distributed to a depth of about 80 nm. An oxide layer was formed at the surface, with the specific combination of the oxide phases depending on the number of accumulated pulses. Changes in the morphological characteristics are reflected in the increase of the mean surface roughness and the generation of a certain number of cavities. These features are decreased with increasing number of pulses, caused by the surface melting and a pronounced mobility of the materials.  相似文献   

10.
The melting parameters for an AlSi12 alloy, which lead to surface-melted layers with constant melting depth and smooth surface have been discovered using the electron beam melting technique. The main mechanical properties of the melted layer were determined with different testing methods, which were adapted for this specific use. Examination under quasistatic stresses showed an increase of the hardness of 60% compared with the base material. The tensile strength increased in the melted layer by about 50%, whereas the elongation was not reduced drastically. Examination under fatigue stress resulted in a reduced fatigue strength of the surface-melted samples. The reason for this was crack initiation at pores at the boundary of melted layer and base material. For a poreless melted AlSi12 alloy, however, the same fatigue strength as for the base material was found.  相似文献   

11.
为了改善微弧氧化(MAO)膜层多孔疏松的组织和性能, 对其进行了激光重熔处理, 并制备了两种实验膜层: (1)选择双向电流脉冲和Na2SiO3-KOH体系的工作液, 在6082铝合金基体上制备平均厚度为18 μm的MAO膜层; (2)采用Nd:YAG激光器对上述MAO膜层进行激光重熔(LSM)处理, 获得MAO+LSM膜层。利用扫描电子显微镜(SEM)、X射线衍射仪、超显微硬度计和电化学分析仪分别检测上述两种膜层的微观形貌、相组成、表面硬度和耐蚀性能。结果表明: 激光重熔后的膜层由内往外分为致密层、中间层和重熔层, 组织致密、气孔率低的重熔层取代了MAO疏松层, MAO+LSM膜层中α-Al2O3相的比例得到提高, 硬度和耐蚀性能也进一步得到改善, 且保持了MAO膜层与基体的结合方式。  相似文献   

12.
激光熔覆TiCp/Ni基合金复合涂层中TiCp的行为   总被引:6,自引:1,他引:5  
通过激光熔覆TiCp/Ni基合金复合涂层微观组织的研究表明,TiC颗粒在熔覆过程中表面发生部分溶解,当凝固时,溶解的部分TiC在残留TiC颗粒上重新外延生长析出,并与基体合金元素产生附加合金化,同时,TiC颗粒成为从激光熔体凝固各相优先形核的基底;TiC颗粒与凝固前沿间的相互作用控制其微观分布。  相似文献   

13.
采用真空电弧熔炼法制备MoNiZrTiHf高熵合金,研究其在960℃下冰晶石熔盐中的腐蚀性能。利用带有能谱仪的扫描电镜和X射线衍射仪分析高熵合金腐蚀层的形貌、成分和组织结构。结果表明:MoNiZrTiHf高熵合金在冰晶石熔盐中的腐蚀速率随时间的延长先快后慢再加快。熔盐的NaF与AlF3的分子比影响合金腐蚀性能,合金在分子比为1.8的熔盐中表现出更好的耐腐蚀性能。腐蚀过程主要为氟离子向合金内部渗透后开裂,并加速O、Al、Na等元素向合金内部扩散并且腐蚀层疏松而后脱落,表层的腐蚀产物主要为Zr、Hf的氧化物;腐蚀层中间层的产物主要为金属间化合物及金属氧氟化物。  相似文献   

14.
目的 增强钛合金表面耐磨损性能。方法 采用激光熔覆与激光重熔技术在TC4钛合金表面制备Co800–Si3N4–YPSZ(Y2O3部分稳定ZrO2)与Co800–Si3N4–YPSZ–MGOSs(单层氧化石墨烯薄片)复合层,并对熔覆层及重熔层微观组织结构、元素分布及耐磨损性能进行分析。结果 细晶强化作用改善了Co800–Si3N4–YPSZ–MGOSs熔覆层的耐磨性。激光重熔后,在熔池快速冷却过程中产生了非晶–纳米晶相,促进了多物相重熔层形成。MGOSs受热分解释放了C,在熔池中原位生成了Ti(CN)。结论 含有Ti5Si3、TiN及TiC等多种硬质增强相的Co800–Si3N4–YPSZ–MGOSs熔覆层的摩擦因数较TC4的摩擦因数降低,其磨损体积约为TC4磨损体积的1/7。  相似文献   

15.
Hard Particle Dissolution and Structure of Coarsegrained Dispersion Layers on Steel Produced by Convection-reduced Laser Melting With the aim to produce hard and wear-resistant dispersion layers coarse grained TiC-and TiB2-particles were incorporated into the surface layers of steels by means of a two-step laser melting process with reduced melt bath convection. The influence of the carbon conent of the steel and content of alloying elements and hard particles in the screen printed layer on solidification structures and particle dissolution was investigated by optical and electron microscopy and x-ray microanalysis. The produced layers were also characterized by hardness measurements.  相似文献   

16.
李倩 《精密成形工程》2021,13(6):151-155
目的 为了提高TC4钛合金焊缝强度,满足实际生产的要求.方法 对TC4钛合金表面分别进行砂纸打磨、喷砂、涂覆石墨层以及激光扫描处理,然后采用2000 W光纤激光器对TC4钛合金进行拼接焊接实验.结果 对表面处理后的焊接焊缝熔深、抗拉强度进行了测试,结果表明,相对于未经过表面处理的焊缝熔深,采用表面处理后的焊缝熔深均增加了30%,焊缝抗拉强度均有增加,其中采用激光扫描处理后的焊缝抗拉强度达到最高的1106 MPa,超过了母材的抗拉强度.结论 激光扫描处理后,在材料表面形成的毛化现象,增加了材料对激光的吸收率,提高了焊缝的熔深,同时激光扫描过程中,未引入任何的杂质,不会产生裂纹及气孔,使焊缝的抗拉强度大于母材,满足实际生产要求.  相似文献   

17.
Laser surface alloying of Mo, WC and Mo–WC powders on the surface of Ti6Al4V alloys using a 2 kW Nd-YAG laser was performed. The dilution effect upon the microstructure, microhardness and wear resistance of the surface metal matrix composite (MMC) coating was investigated. With a constant thickness of pre-placed powder, the dilution levels of the alloyed layers were found to increase with the incident laser power. The fabricated surface MMC layer was metallurgically bonded to the Ti6Al4V substrate. The microhardness of the fabricated surface layer was found to be inversely proportional to the dilution level. The EDAX and XRD spectra results show that new intermetallic compounds and alloy phases were formed in the MMC layer. With the existence of Mo content in the pre-placed powder, the β-phase of Ti in the MMC coating can be retained at the quenching process. With increasing weight percentage content of WC particles in the Mo–WC pre-pasted powder, the microhardness and sliding wear resistance of the laser surface coating were increased by 87% and 150 times, respectively, as compared with the Ti6Al4V alloy. The surface friction of the laser-fabricated MMC coatings was also decreased as compared with the worn Ti6Al4V substrate.  相似文献   

18.
目的 针对目前铝合金和碳纤维增强热塑性复合材料(CFRTP)直接连接接头强度低的问题,对铝合金表面进行预处理,以提升异种材料的激光连接强度。方法 通过激光毛化工艺在铝合金表面预制微织构,然后利用光纤激光连接铝合金与CFRTP,研究了激光焊接工艺参数对铝合金与CFRTP焊接接头拉剪性能的影响。结果 当激光功率为750 W、焊接速度为0.2 m/min时,铝合金/CFRTP接头拉剪力达到最大值5 209 N,是未激光毛化的接头拉剪力的2.29倍。通过扫描电镜(SEM)对断口进行分析,发现界面断裂形式主要为CFRTP脱出和剪切断裂。采用SEM及能谱仪(EDS)对接头截面进行分析,发现结合界面处存在微观机械嵌合作用,同时在界面处存在元素过渡层。结论 随着激光功率的增大,焊接接头的拉剪力增大,但焊接功率较大会导致热输入过大,造成树脂发生热分解,导致焊接接头拉剪力降低。随着焊接速度的增大,焊接热输入降低,导致焊接过程中树脂熔化量减少,焊接接头的拉剪力降低。界面的机械嵌合作用使焊接接头具有较高的结合强度。  相似文献   

19.
The temperature distribution during selective laser sintering of a thin vertical stainless-steel wall has been simulated. The object is grown by successive deposition and laser melting of powder layers. An adjoint problem, including calculation of temperature in the part and the surrounding operating region, has been solved for different manufacturingprocess parameters within the plane statement based on two different approaches. The first approach considers transient heat conduction problem for a layer-by-layer grown body. The height of the calculation domain increases at each calculation step due to the addition of a new powder layer and a short-term laser treatment is applied to the layer region. The duration of one calculation step is determined by the time between two laser passes. The temperature distribution found at each step is used as the initial conditions for calculations at the next step. The thermal state achieved by the object under consideration after 500 calculation steps (i.e., after deposition and melting of 500 layers) is compared with a corresponding solution to the quasi-steady-state problem, which is found for a final geometry of the part, provided that a constant time-averaged heat flux is set to be supplied to the synthesis region. By example of the simple geometry under consideration, a quasi-steady-state solution can provide a fairly good estimate of the macroscopic thermal state of the synthesized part.  相似文献   

20.
钛合金表面激光熔覆技术的研究进展   总被引:3,自引:1,他引:2  
金属表面激光熔覆技术是近年来发展起来的一种新型表面处理工艺.利用高能激光束对材料表面瞬间加热和熔池快速冷却的特性,在钛合金表面用激光熔覆一层陶瓷增强复合材料,能够显著提高钛合金的耐磨性能.简要阐述了金属表面激光熔覆工艺、钛合金表面激光熔覆技术及其在未来的发展方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号