首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A set of Zn0.97−xCuxCr0.03O (0 ≤ x ≤ 0.03) samples has been synthesized by the sol-gel method. The structural, optical and magnetic properties of the samples were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and vibrating sample magnetometer (VSM). With Cu doping concentration increasing up to 2 at%, the XRD results showed that all diffraction peaks corresponded to wurtzite structure of ZnO, but for Zn0.94Cu0.03Cr0.03O, the secondary phase of Cu emerged. PL measurements showed that Zn0.97−xCuxCr0.03O powders and pure ZnO with the Cu concentration varied from 0.00 to 0.02 exhibited obvious blue shift; the green emission peak could be effectively enhanced with the increase of the Cu concentration. Magnetic measurements indicated that room-temperature ferromagnetism of Zn0.97−xCuxCr0.03O was an intrinsic property when Cu concentration was less than 0.02. The saturation magnetization of Zn0.97−xCuxCr0.03O (x = 0, 0.01, 0.02) increased with the increase of the Cu concentration.  相似文献   

3.
We here report the structural and optical studies of Zn1−xyBexMgyO (0 ≤ x ≤ 0.15; 0 ≤ y ≤ 0.20) powders and thin films. From the Rietveld refinement of the powder X-ray diffraction (XRD) patterns it was revealed that the value of ‘a’ lattice parameter remains almost unchanged whereas ‘c’ parameter reduces with Be and Mg co-doping in ZnO. The Zn-O bond length also decreases in co-doped samples. Raman studies of the pure ZnO powder showed all the characteristic peaks of the wurtzite hexagonal structure and with (Be, Mg) co-doping new modes appeared which can be attributed to arise as a result of substitution. The XRD of the films prepared from the powders using pulsed laser deposition (PLD) technique exhibited the preferential orientation and with increase in co-doping the (0 0 0 2) peak also shifts to higher 2θ values suggesting the incorporation of Be/Mg at the Zn-site. From the UV-visible optical transmittance measurement it was noticed that the band gap of the pristine ZnO film is 3.3 eV which enhanced up to 4.51 eV for Zn0.7Be0.1Mg0.2O film which lies in the solar blind region and is very useful in the realization of deep UV detectors.  相似文献   

4.
A new series of photocatalysts, Bi2Zn2/3−xCuxTa4/3O7 (Cu-β-BZT) crystals with pyrochlore structure were synthesized by the method of solid-state reaction (SSR). With small amount of Cu doped (0.01 ≤ x ≤ 0.04), the phase structure was kept to be monoclinic pyrochlore as pure β-BZT. The diffuse reflectance spectrum of Cu-β-BZT samples showed a red shift. The method of Cu doping enhanced the photocatalytic activity, and when the value of x is 0.03, the sample showed the highest activity, which is about 10 times higher than that of pure β-BZT under UV light. Especially, the samples of Cu-β-BZT showed photocatalytic activities under visible light irradiation (λ > 400 nm). Effects of the Cu doped on the photocatalytic activities of the catalysts were also discussed.  相似文献   

5.
In this paper, we report results concerning tunable light emission and color temperature in cerium-doped low-silica-calcium-alumino-silicate (LSCAS) glass for smart white-light devices. Spectroscopic results, analyzed using the CIE 1931 x-y chromatic diagram, show that this glass presents two broad emission bands centered at 475 and 540 nm, whose intensities can be tuned by the excitation wavelength. Moreover, the same emission can be achieved from a color temperature range from 3200 to 10,000 K, with a color-rendering index (CRI) of around 75% obtained by changing the optical path length of the sample. Our new phosphor LSCAS glass, which is a unique system that exhibits tunable yellow emission, combines all qualities for white-light devices.  相似文献   

6.
Optical properties of intermetallic isostructural compounds LaNi5−xCux (x = 0, 0.6, 1, 1.2) have been studied in the spectral range from 0.22 to 15 μm using the ellipsometry method. It was found that the substitution of copper for nickel leads to local changes in the optical conductivity spectra. Theoretical calculations of the electronic structure and interband optical conductivity of LaNi5−xCux compounds with x = 0, 1, 2, 3 were performed in the generalized gradient approximation within the pseudopotential plane-wave method PWSCF. Both the optical spectroscopic measurements and theoretical calculations demonstrate the presence of a broad absorption band around 4 eV associated with the Cu 3d → Ni 3d electron transitions and increasing with the growth of copper content.  相似文献   

7.
8.
A series of Eu3+ activated Na3Gd1−xEux(PO4)2 (0 ≤ x ≤ 1) phosphors were synthesized by solid-state reaction method. The structures and photo-luminescent properties of these phosphors were investigated at room temperature. The results of XRD patterns indicate that these phosphors are isotypic to the orthorhombic Na3Gd(PO4)2. The excitation spectra indicate that these phosphors can be effectively excited by near UV (370-410 nm) light. The intensities of magnetic dipole transition 5D0 → 7F1 and forced electric dipole transition 5D0 → 7F2 are comparable, and the energy ratio (5D0 → 7F1/5D0 → 7F2) is 1.1. The emission spectra exhibit strong reddish orange performance (CIE chromaticity coordinates: x = 0.62, y = 0.38), which is due to the 5D0 → 7FJ transitions of Eu3+ ions. The correlation between the structure and the photo-luminescent properties of the phosphors was studied. The energy transfer and concentration quenching of the phosphors were discussed. Na3Gd1−xEux(PO4)2 has a potential application for white light-emitting diodes.  相似文献   

9.
The thermoelectric properties of Na0.8ZnxCo1−xO2/(ZnO)y (x ≤ 0.01, 0 ≤ y ≤ 0.14) have been systematically investigated. The results suggest that doping divalent Zn ions within solubility limit x* ∼ 0.01 leads to simultaneous reduction in resistivity and enhancement of thermopower. Analysis of the results show that the reduction of resistivity may be attributed to improved mobility of carriers, while the enhancement of thermopower may originate from the geometric relaxation of distorted CoO6 octahedra caused by partial Zn substitution, leading to a narrower band width in the strongly correlated environment, consequently resulting in a remarkable 20% improvement in power factor.  相似文献   

10.
The effect of different mild post-annealing treatments in air, at 270 °C, for 4-6 min, on the optical, electrical, structural and chemical properties of copper sulphide (CuxS) thin films deposited at room temperature are investigated. CuxS films, 70 nm thick, are deposited on glass substrates by vacuum thermal evaporation from a Cu2S:S (50:50 wt.%) sulphur rich powder mixture. The as-deposited highly conductive crystalline CuS (covellite) films show high carrier concentration (∼1022 cm−3), low electrical resistivity (∼10−4 Ω cm) and inconclusive p-type conduction. After the mild post-annealing, these films display increasing values of resistivity (∼10−3 to ∼10−2 Ω cm) with annealing time and exhibit conclusive p-type conduction. An increase of copper content in CuxS phases towards the semiconductive Cu2S (chalcocite) compound with annealing time is reported, due to re-evaporation of sulphur from the films. However, the latter stoichiometry was not obtained, which indicates the presence of vacancies in the Cu lattice. In the most resistive films a Cu2O phase is also observed, diminishing the amount of available copper to combine with sulphur, and therefore the highest values of optical transmittance are reached (65%). The appearance on the surface of amorphous sulphates with annealing time increase is also detected as a consequence of sulphur oxidation and replacement of sulphur with oxygen. All annealed films are copper deficient in regards to the stoichiometric Cu2S and exhibit stable p-type conductivity.  相似文献   

11.
Delafossites CuY1−xCaxO2 (0 ≤x ≤0.10) ceramics have been prepared by solid state reaction using Cu2O, Y2O3 and CaCO3. Liquid phase sintering, which obviously accelerates the reaction speed of Cu2O-Y2O3-CaCO3 system and promotes the formation of CuYO2 phase is evidenced for the Ca-doped samples. During the sintering process, CuO can react with CaO to form two intermediate compounds, CaCu2O3 and Ca2CuO3, which decompose into CaO and liquid phase during 1273-1323 K. In the dopant range of 0 ≤x ≤0.10, both electrical conductivity and density of the samples are increased by Ca-doping. The room temperature conductivity of CuY0.94Ca0.06O2 is more than four orders of magnitude higher than that of CuYO2.  相似文献   

12.
Calcium yttrium tetrametagermanates Y2CaGe4O12 doped with Er3+ and Er3+/Yb3+ reveal upconversion emission in visible spectral range under near-infrared excitation, λex = 980 nm. For the solid solution ErxY2−xCaGe4O12 concentration dependencies for the green and red lines of the visible emission around 526 nm (2H11/2 → 4I15/2), 545 nm (4S3/2 → 4I15/2) and 670 nm (4F9/2 → 4I15/2) show the optimal value for the sample x = 0.2. The power dependence of the visible luminescence measured at room temperature in the low-power limit indicates two-photon upconversion process. Direct intensification of the upconversion emission signals has been achieved by ytterbium sensitizing. The other upconversion excitation mechanism in Y2CaGe4O12:Er3+ is discussed for an 808 nm incident laser irradiation. A scheme of excitation and emission routes involving ground/excited state absorption, energy transfer upconversion, nonradiative multiphonon relaxation processes in trivalent lanthanide ions in Y2CaGe4O12:Er3+ and Y2CaGe4O12:Er3+, Yb3+ has been proposed. Conditions for visible emission occurrence under quasi-resonance λex = 1064 nm excitation depending on pump power values are considered. In the low-power regime only near-infrared emission caused by the transition 4I13/2 → 4I15/2 in erbium ions has been detected.  相似文献   

13.
Yttrium-doped ZnO nanoparticles (Zn1−xYxO, x = 0, 0.03, 0.05) were synthesized by sol-gel technique. The effects of yttrium doping concentration on the structures, morphologies and optical properties of as-synthesized Zn1−xYxO nanoparticles were investigated in detail. The results from structural characterizations clearly demonstrated that yttrium ions were successfully doped into the crystal lattice of ZnO matrix. Besides a UV emission centered at ∼383 nm, the PL spectra of all the samples exhibited a broad deep-level emission, which can be deconvoluted into two Gauss peaks centered at 539 nm (P1) and 598 nm (P2), respectively. As the concentration of Y doping increased from 0% to 5%, the peak position with maximum intensity in deep-level emission band was gradually tuned from 539 nm to 598 nm and the relative intensity ratio of IP1/IP2 also decreased step by step, which revealed a unique optical property of yttrium-doped ZnO nanoparticles.  相似文献   

14.
The evolution of structure and optical properties of Cu2ZnSn (SxSe1−x)4 (CZTSSe) solid solutions in a wide composition range (0 ≤ x ≤ 1) has not been fully elucidated. We have performed comprehensive characterization on the CZTSSe powders with different S/Se ratios, which were synthesized by the solid state reaction method. X-ray diffraction patterns demonstrate that the lattice parameters a and c of CZTSSe decrease lineally when S replace Se gradually, which obeys the Vegard's rule. The A1 Raman modes of CZTSSe show a typical two-mode behavior. The absorption spectra reveal that the band gap of CZTSSe can be tuned monotonously between 0.96 and 1.5 eV with almost linearity, and a small band gap bowing constant (b ≈ 0.08 eV) is deduced.  相似文献   

15.
It is shown that phase-separated metallic glasses on the nanoscale can be prepared by rapid quenching of Cu50Zr50−xGdx melts with a low concentration of gadolinium (= 5 at.%). Gd-enriched clusters of 2 nm size are formed as early stages of decomposition in the deeply undercooled melt. The key physical parameter to obtaining such a nanoclustered microstructure upon quenching is the critical temperature of liquid-liquid phase separation which has to be close to the glass transition temperature. Thus, the thermodynamic properties of the liquid phase even in the metastable deeply undercooled melt essentially determine the structure formation. Analysis of the spatial atomic arrangement by atom probe tomography after annealing in the supercooled liquid state provides direct evidence of the spinodal character of the decomposition by uphill diffusion. The Gd-enriched nanoclusters exhibit ferromagnetic ordering below 50 K and the cluster size regime derived from magnetization measurements is in good agreement with that obtained from atom probe tomography investigations. The first stage of crystallization of Cu50Zr45Gd5 glass is observed to be Ostwald-type ripening on a nanoscale. The phase-separated glass acts as a precursor for the formation of a metastable nanocrystalline structure.  相似文献   

16.
Due to the large variety of properties offered by the telluride binaries CdTe, ZnTe, MgTe, HgTe and MnTe as well as their mixed ternary alloys, an accurate knowledge of their electronic band parameters is crucial. These materials have been extensively studied but, some points bearing on several properties have never previously reported or are still not clear. In this paper, we report results on the conduction and valence band offsets of the pseudo-morphically strained Cd1−xXxTe layer on relaxed Cd1−yXyTe substrate, X = Zn, Hg, Mg and Mn. Based on the Van Der Walle model, calculations have been performed for the all range of material and substrate 0 ≤ x,y ≤ 1. These discontinuities have not yet calculated for X = Mg, Mn or Hg in the all range 0 ≤ x,y ≤ 1. For the CdMnTe diluted magnetic semiconductor which we focus more interest due to its considerable current interest for applications, calculations have been done without and with correction taking into account magnetic effect of magnesium ions Mn2+. It is found that the introduction of only a few percent of Mn into CdTe provides a unique opportunity to combine two important fields in physics, semiconductivity and magnetism. We can take advantage both of possibility of applications in solid-state lasers and exceptional magnetic properties offered by this magnetic diluted semiconductor.This study presents important quantities that are required to model quantum structures and offers a fast and inexpensive way to check device designs and processes.  相似文献   

17.
Eu3+-activated Li2Zn2(MoO4)3 multiwavelength excited red-emitting phosphors were synthesized via a solid state reaction. The structure and photoluminescence characteristics were investigated by X-ray powder diffraction and fluorescent spectrophotometry, respectively. The excitation spectrum included a strong broadband ranging from 250 to 350 nm and some sharp peaks at 363, 384, 395, 465, and 533 nm, which matchs the radiations of near-UV or blue light-emitting diodes chip well. Upon excitation either of near-UV or blue even green light, the intense red emission with 615 nm peak can be observed, which is ascribed to the 5D0-7F2 transition of Eu3+ ions. The chromaticity coordinates (x = 0.65, y = 0.34) of the as-obtained phosphor is very close to the National Television Standard Committee standard values (x = 0.67, y = 0.33). All these characteristics suggest that Eu3+-doped Li2Zn2(MoO4)3 wavelength-conversion material to be suitable candidate red component for phosphor-converted white light-emitting diodes.  相似文献   

18.
KSrPO4:Tb3+ phosphors were prepared by a solid-state method and their photoluminescence properties were investigated under vacuum ultraviolet excitation. In the excitation spectrum monitoring at 544 nm, the band in the region of 120-162 nm can be attributed to be the overlap of host absorption and charge transfer transition of O2− → Tb3+, and the band ranging from 162 to 300 nm was assigned to the f-d transition of Tb3+. The photoluminescence spectrum shows that the phosphors exhibited a strong green emission around 544 nm corresponding to the 5D4  7F5 transition of Tb3+ under the excitation of 147 nm. Optimal emission intensity was obtained when x = 7% in KSr1-xPO4:xTb3+ and the luminescent chromaticity coordinates were calculated to be (x = 0.317, y = 0.522) for KSr0.93PO4:7%Tb3+.  相似文献   

19.
Glasses from xCuO·(100 − x)[4TeO2·PbO2] system where x = 0-40 mol% were studied by density measurements, FTIR, UV-vis and EPR spectroscopy in order to obtain information about the changes that appear in the structure of matrix glass with the doping of copper ions.The FTIR data analysis shows that the copper ions will be distributed in the six-coordinated interstices ([PbO6] structural units) and some [TeO4] structural units will be converted to [TeO3] structural units because the lead ions have a strong affinity towards these groups containing non-bridging oxygens, with negative charge.From the EPR studies, we can conclude that Cu+2 ions have an environment elongated along the z-axis and the ground state of the Cu+2 is dx2y2 orbital (2B1g state). When the concentration of CuO is increased beyond 5 mol%, the intensity and width of both the parallel and perpendicular hyperfine components are observed to increase.  相似文献   

20.
Acoustically induced two-photon absorption (AITPA) and optical Kerr effect (AIOKE) in Pr and Tm doped calcium gadolinium oxyborate Ca4GdO(BO3)3 (CGOB) nanocrystallites (with sizes below 60 nm) prepared by sol-gel method and embedded into the PMMA matrices were studied. The source of the acoustical field generated the frequency equal to about 1.2 MHz and achieved maximal acoustical power density equal to about 6 W/cm2. The AITPA was measured at fundamental Er:glass laser wavelength (1.54 μm) and was observed only during applying of the prolonged acoustical field. The AITPA effect was substantially higher for the Tm3+ doped composites than for the Pr3+ doped ones. With increasing acoustical power, the AITPA increases achieving its maximal value at acoustical power density equal to about 4.70 W/cm2. Temperature dependences have demonstrated the maximal values of the AITPA at temperatures equal to about 310 K corresponding to the AITPA value equal to about 3.4 cm/GW. At the same time at acoustical power density about 3.8 W/cm2 the AIOKE achieves its minimum for the Pr doped CGOB nanocomposites. So one can expect that these two effects have different signs of contribution caused by the acoustical field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号