首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocrystalline bulk Mg-3Al-Zn alloy with an average grain size of 48 nm has been prepared by powder metallurgy assisted hydriding-dehydriding. Evolutions of nanograined structure powders and bulk alloy have been investigated by TEM, SEM and XRD, respectively. The results showed that by milling in hydrogen for 60 h, as-hydriding powder possessed an average grain size of 5.9 nm. After a subsequent process of desorption-recombination treatment (at 350 °C) and consolidation process (extruded at 200 °C) resulted in bulk samples with an average crystallite size of 48 nm and MgH2 was fully turned into Mg. The consolidated samples of 60 h milled powder had a final density of 1.77663 ± 0.006 g/cm3, which corresponded to 97.57 ± 0.3% of theoretical density. The highest microhardness of the nanocrystalline bulk alloy reached about 872.5 MPa, which is about three times higher than that of the coarse-grained AZ31.  相似文献   

2.
Nanocrystalline Ca1−xSmxMnO3 (0 ≤ x ≤ 0.4) manganites were prepared by a soft chemical method (Pechini method) followed by auto-combustion and sintering in air at 1073 or 1473 K. Single-phase powders with general composition Ca1−xSmxMnO3 were obtained after 18 h annealing. The particle and grain sizes of the substituted Sm-manganites did not exhibit variation with samarium content, but increase with increasing the sintering temperature. All manganites show two active IR vibrational modes near 400 and 600 cm−1 characteristic of the BO6 octahedron vibrations.For the samples sintered at Ts = 1473 K, the partial substitution of calcium by samarium in the CaMnO3 phase induces a marked decrease in the electrical resistivity, in the temperature range of 300-900 K, and at the same time a metal-to-insulator transition occurs; for Ts = 1073 K all the samples present semiconductor behaviour. With the increase of the annealing temperature the grain size increases and a metal-semiconductor transition appears. The results can be ascribed to the Mn4+/Mn3+ ratio and particle grain size. The effects of particle size on the electrical properties can be attributed to the domain status, changes in the Mn-O-Mn bond angle and Mn-O bond length.  相似文献   

3.
Spark plasma sintering technique was used for the consolidation of nanostructured titanium carbide synthesized by mechanical alloying in order to avoid any important grain growth of the compact materials. The TiC phase was obtained after about 2 h of mechanical alloying. Towards the end of the milling process (20 h), the nanocrystalline powders reached a critical size value of less than 5 nm. Some physical and mechanical properties of the consolidated carbide were reported as a function of the starting grain size powders obtained after different mechanical alloying durations. The crystalline grain size of the bulk samples was found to be increased to a maximum of 120 nm and 91 nm for carbides mechanically alloyed for 2 h and 20 h respectively. The Vickers hardness showed to be improved to about 2700 Hv for a maximum density of 95.1% of the bulk material.  相似文献   

4.
W nanoparticles derived from WO3 during heating in H2 were carburized at 900-1100 K in pure, Ar and H2-diluted CH4 atmospheres. It was aimed to elucidate carburization behavior of pre-reduced W powders under various atmospheres and to establish optimal conditions for the synthesis of nanocrystalline WC. Weight measurements, XRD and SEM were used to characterize the products at various stages of the reaction. At 900 K, carburization was limited to the formation of W2C owing to slow C diffusion. At 1000 K, WC particles were obtained within ~ 75 min using the diluted gas mixtures, while under pure CH4 atmosphere carburization reaction practically stopped due to pyrolytic carbon skin formed on particle surfaces where C supply was more than consumed. WC powders with particle size 40-65 nm and grain size 15-25 nm were synthesized at 1100 K in a short time under the gas atmospheres studied.  相似文献   

5.
Nanosized BaO-B2O3-SiO2 glass powders are directly prepared by flame spray pyrolysis. The mean size of the BaO-B2O3-SiO2 glass powders with amorphous phase and spherical shape is 30 nm. The effects of glass powders on the sintering characteristics of the BaTiO3 pellet formed from the nanosized BaTiO3 powders are investigated. The mean size and BET surface area of the BaTiO3 powders prepared by spray pyrolysis are 110 nm and 9.1 m2/g. The BaTiO3 pellet with glass additive has large grain size with several microns, dense structure and pure tetragonal crystal structure at a sintering temperature of 1000 °C. The XRD pattern of the pellet has distinct split of (2 0 0) and (0 0 2) peaks at 2θ ≈ 44.95°. The dielectric constant of the pellet without glass additive is 2180. However, the dielectric constants of the pellets with 1, 3, 5 and 7 wt% glass additive with respect to BaTiO3 are 2496, 2514, 2700 and 2225, respectively.  相似文献   

6.
In this work, bismuth sodium titanate (Bi0.5Na0.5)TiO3 (BNT) and praseodymium (Pr)-doped BNT were successfully produced using the soft combustion technique. The effects of Pr doping on stoichiometry, microstructure, density and dielectric properties were studied. Pure Pr-doped BNT was obtained in all samples containing 5, 10 and 20 mol% Pr after calcination at 800 °C for 3 h. The produced powders were then pressed into pellets and sintered at 1100 °C for 3 h. The very similar ionic radii of Pr3+ with Bi3+ and Na+ made it possible to substitute both Bi and Na. The crystallite size and grain size decreased with increasing Pr amount because Pr acted as grain growth inhibitor, both for calcined powders and for sintered pellets. Maximum density was obtained in 5 mol% Pr-doped BNT, beyond which density decreased. The maximum dielectric constant of 756 was obtained in 5 mol% Pr-doped BNT and decreased at higher levels of Pr doping. Pr doped into BNT also caused a decrease in dielectric loss.  相似文献   

7.
The influence of milling and subsequent consolidation treatments on the microstructural properties and hardness of the fabricated Cr3C2, Cr7C3 and Cr23C6 ceramic powders are investigated. For this reason, the elemental powders of Cr and C were mixed with proper ratio and then milled to the nanometer crystallite sizes (between 6 and 20 nm) and then were consolidated by using uniaxial cold press and subsequent heat treatment (at 1100 °C for 1 h) in Argon atmosphere. Microstructures of consolidated samples were characterized using X-ray diffraction (XRD) and microhardness measurements. A drastic increase in crystallite size of the samples was observed due to the effect of heat treatment. However, the as-consolidated samples still maintained their nanocrystalline characteristic with an average grain size of less than 100 nm. Besides, a very high hardness of 25 GPa was achieved for the Cr3C2 composition. This high hardness is attributed to the formation of carbide phases in the consolidated samples.  相似文献   

8.
Molybdenum disilicide powders were prepared by heating a mixture of Mo and Si powders with Na metal. The single phases of β-MoSi2 and α-MoSi2 powders were obtained at 873 K and 1073 K, respectively. The preparation temperature of the single phase α-MoSi2 powder was 500 K lower than that of the conventional solid state reaction method using Mo and Si powders. The grain size of both MoSi2 powders was less than 2 μm, and their shape was angular and irregular.  相似文献   

9.
We present a complex fluorescence study of a series of gadolinium oxide polycrystalline powders singly, doubly and triply doped with trivalent rare earth ions (Er3+, Tb3+, and Dy3+), to explore a possibility of their use as materials for white light emitting diodes. The excitation and luminescence spectra along with the decay kinetics were measured in the temperature range from 6 to 300 K. The luminescence efficiency was studied within the visible spectral range, i.e. −400 nm to 750 nm under excitation by 355 nm third harmonic Nd:YAG laser pulses. Singly doped Er3+ sample gave stronger luminescence signals, but others showed significantly larger decay lifetimes. The successive rare earths doping leads to substantial changes of the spectral positions due to the up-conversion processes. In the singly (Er3+) doped sample, following the time resolved spectrum and decay curves, there are two different types of emissions: at 660 nm and at shorter wavelengths (below 640 nm) the red emission's lifetime is ten times longer than at shorter wavelengths. The singly doped sample shows unclear temperature-dependence of luminescence with lifetime at 550 nm (the longest at 100 K, similarly at 6 K and 300 K) and achieved luminous efficacy 73.5 lm/W.  相似文献   

10.
Nanosized powders of Mg-Cd-La ferrite synthesized by oxalate co-precipitation method using high purity sulphates are presented. The powder has been characterized by X-ray powder diffraction (XRD), infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The phase identification of powder reveals biphasic nature of materials. The lattice constant, X-ray and physical density, porosity, crystallite size, site radii and bond length were directly affected by addition of rare earth ion (La3+) in Mg-Cd ferrite. The crystallite size of the samples lies in the range 25.67-30.55 nm. FT-IR spectra show two absorption bands in the frequency range from 3.5 × 104 to 8.0 × 104 m−1 which are attributed to stretching vibration of tetrahedral and octahedral complex Fe3+-O2− respectively. The addition of La3+ alters the characters of powder and decreases the grain size which suppresses the abnormal grain growth. The addition of La3+ resulted increase in saturation magnetization, remnant magnetization, 4πMs and coercivity. Coercivity shows size dependent behavior. Such results are promising ones for high frequency applications.  相似文献   

11.
The synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanopowders prepared using a simple co-precipitation process at 348 K and pH = 7 were investigated using differential scanning calorimetry/thermogravimetry (DSC/TG), an X-ray diffractometer (XRD), the Raman spectra, transmission electron microscopy (TEM), selected area electron diffraction (SAED), and an energy dispersive spectrometer (EDS). The activation energy of tetragonal ZrO2 crystallization from 3Y-TZP freeze-dried precursor powders using a non-isothermal method, namely, 169.2 ± 21.9 kJ mol−1, was obtained. The growth morphology parameter n was approximated as 2.0, which indicated that it had a plate-like morphology. The XRD, Raman spectra, and SAED patterns showed that the phase of the tetragonal ZrO2 was maintained at 1273 K. The crystallite size of 3Y-TZP freeze-dried precursor powders calcined at 1273 K for 5 min was 21.3 nm.  相似文献   

12.
Studies of the absorption and temperature dependence of photoluminescence spectra and luminescence decay times of the intra-shell f-f transitions (2F5/2 ↔ 2F7/2) of Yb3+ ions in K2LaCl5:Yb3+ powders with 5, 10, 15 and 25% of ytterbium are presented. The spectroscopic properties of the powders with different ytterbium content are compared. Experiments were performed at the temperatures from 25 to 300 K. The strong emission around 982 nm has been observed under direct excitation of the luminescence center with 960 nm line of continuous wave Ti:sapphire laser pumped by Ar-ion laser. The temperature quenching effect of the luminescence was rather week, especially in the samples with higher concentration of ytterbium (15 and 25%). Additionally the probability of the f-f radiative transitions of the Yb3+ ions in these powders was almost temperature independent for more heavily doped samples (with 15 and 25% of Yb) and only weakly temperature dependent for less doped samples (with 5 and 10% of Yb). These results reveal high thermal stability of the optical properties of the examined powders.  相似文献   

13.
Nanocrystalline nickel coating was synthesized by direct current electrodeposition from a Watts bath at the current density of 100 mA/cm2 and pH = 4. The effect of saccharin addition (0-10 g/l) and bath temperature (45-65 °C) on the average grain size of the deposits was investigated by XRD technique. The results showed that the average grain size decreased from 426 nm to 25 nm as the saccharin concentration increased from 0 to 3 g/l, while further increase in saccharin concentration had no significant effect. Theoretical model also indicated a non-linear function for dependence of grain size on saccharin concentration, which was in accordance with experimental results. The experimental results showed that the increases in the bath temperature had no considerable effect on the average grain size of the deposits. A theoretical formula was also established for the temperature dependence of the grain size.  相似文献   

14.
Microwave sintering of microcrystalline and nanocrystalline WC–12Co powder compacts was carried out employing different time–temperature schedules. The microcrystalline powder compacts were made from powders with particle sizes ranging from 5 to 45 μm by using methyl cellulose as the lubricant. The nanocrystalline powder compacts were made from powders having a mean WC grain size of 38 nm, without employing any lubricant. The sintered samples were characterized with respect to their densities, Vickers hardness, fracture toughness and microstructures and the challenges encountered during microwave sintering of the WC–12Co powders are discussed.  相似文献   

15.
Reactive lanthanum orthoferrite nanoparticles were obtained by a polymeric precursor route. Nanoparticle growth and crystallization from amorphous precursor, as well as the formation of a grain boundary network in polycrystalline aggregates at different calcination temperatures were studied by conventional and high-resolution electron microscopy; electron and X-ray diffraction analysis; Raman; IR; and UV-vis spectroscopy. Microstructure measurements were compared to X-ray diffraction and chemical analysis results. Electron diffraction, combined with electron microscopy results were used to determine the content of amorphous phase. The coherent crystalline domain size and the particle size have been monitored by XRD and electron microscopy in order to determine the evolution of both crystal size and the onset temperature for crystallites formation. The results demonstrate that at 550 °C we obtain pure single-phase nanocrystalline LaFeO3, sized ∼40 nm, without the presence of amorphous phase. The magnetization curves in the 5-350 K range indicate weak ferromagnetism of the LaFeO3 powders.  相似文献   

16.
Neodymium doped YAG transparent ceramics were fabricated by vacuum reactive sintering method using commercial α-Al2O3, Y2O3 and Nd2O3 powders as the starting materials with both tetraethyl orthosilicate (TEOS) and MgO as sintering aids. The morphologies and microstructure of the powders and Nd:YAG transparent ceramics were investigated. Fully dense Nd:YAG ceramics with average grain size of ∼10 μm were obtained by vacuum sintering at 1780 °C for 8 h. No pores and grain-boundary phases were observed. The in-line transmittance of the ceramic was 83.8% at 1064 nm.  相似文献   

17.
The mechanical properties, microstructure and wear performance of zirconia-toughened alumina (ZTA) cutting inserts with Magnesia (MgO) in different particle sizes as additives was investigated. The MgO particle sizes were varied from 80 nm to 7000 nm. The alumina (Al2O3), yittria stabilized zirconia (YSZ) and MgO powders were mixed, compacted and sintered at 1600 °C using the solid-state sintering method. The mechanical and physical properties of the samples such as wear resistance, Vickers hardness, fracture toughness, microstructure and density were analyzed. Commercially available stainless steel (316L) was used as the workpiece for the wear resistance study. It was observed that smaller MgO particle sizes induce better wear performance and mechanical properties for the cutting inserts. Wear resistance analysis showed that the cutting insert with nano-sized MgO (particle size 80 nm) had the lowest wear area of 0.019 mm². The same cutting insert also possessed the highest Vickers hardness value of 1740 Hv compared to the other samples. Furthermore, microstructural observations show that the Al2O3 grain size depends on the particle size of MgO, and is directly related to its hardness property.  相似文献   

18.
采用粉末冶金技术制备块体超细晶Mg-3Al-Zn合金。首先采用球磨Mg、Al、Zn混合粉末来制备纳米晶粉末,所得的粉末的平均晶粒尺寸为45nm。随后将球磨好的粉末封入铝包套内,分别在室温和633K温度下,在真空烧结炉内进行真空热压。然后将烧结后的样品在423K下挤压以进行进一步的致密化处理。结果表明:致密后的冷压样品的晶粒尺寸为180nm,而热压坯的晶粒尺寸为600nm,冷压样品的屈服强度达464MPa;超细晶镁合金的强化机制主要是细晶强化,这主要是由于HCP结构的材料晶粒尺寸对材料的影响更为明显。固化后冷压样品的最终密度为(1.777±0.006)g/cm3,而热压样品的最终密度为(1.800±0.006)g/cm3。  相似文献   

19.
Bismuth potassium titanate (Bi0.5K0.5TiO3; BKT) and praseodymium-doped BKT (Bi0.5(1−x)PrxK0.5TiO3; BPKT) powders were synthesised using the soft combustion technique. Fine particles of 10-100 nm of BKT and BPKT were produced. A single phase BKT was obtained with a minimum of 0.5 mol of glycine. Various compounds of Bi0.5(1−x)PrxK0.5TiO3 where x = 0.01, 0.03, 0.05, 0.10, 0.15 and 0.20 were prepared. Pure BKT and BPKT powders were obtained after calcination at 800 °C for 3 h. After sintering at 1050 °C for 5 h, pure BKT and BPKT pellets were obtained for x = 0 and 0.01. However, for BPKT with x = 0.03, 0.05, 0.10, 0.15 and 0.20, a minor amount of Bi4Ti3O12 (BIT) secondary phase was present after sintering at 1050 °C for 5 h. The crystallite size and grain size of all the samples followed similar trends, first increasing from x = 0 (undoped BKT) to x = 0.05 and then decreasing above x = 0.05. Among the undoped and doped samples, BPKT with x = 0.05 had the highest dielectric properties (?r = 713.87) due to its large crystallite size (68.66 nm), large grain size (∼435 nm) and high relative density (93.39%).  相似文献   

20.
Alumina matrix composites containing 5 and 10 wt% of ZrO2 were sintered under 100 MPa pressure by spark plasma sintering process. Alumina powder with an average particle size of 600 nm and yttria-stabilized zirconia with 16 at% of Y2O3 and with a particle size of 40 nm were used as starting materials. The influence of ZrO2 content and sintering temperature on microstructures and mechanical properties of the composites were investigated. All samples could be fully densified at a temperature lower than 1400 °C. The microstructure analysis indicated that the alumina grains had no significant growth (alumina size controlled in submicron level 0.66-0.79 μm), indicating that the zirconia particles provided a hindering effect on the grain growth of alumina. Vickers hardness and fracture toughness of composites increased with increasing ZrO2 content, and the samples containing 10 wt% of ZrO2 had the highest Vickers hardness of 18 GPa (5 kg load) and fracture toughness of 5.1 MPa m1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号