首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Molar heat capacities at a constant volume (C v) of 2,2-dichloro-1,1,1-trifluoroethane (R123) and 1-chloro-1,2,2,2-tetrafluoroethane (R124) were measured with an adiabatic calorimeter. Temperatures ranged from 167 K for R123 and from 94 K for R124 to 341 K, and pressures were up to 33 MPa. Measurements were conducted on the liquid in equilibrium with its vapor and on compressed liquid samples. The samples were of a high purity, verified by chemical analysis of each fluid. For the samples, calorimetric results were obtained for two-phase (C (2) v), saturated liquid (C or C x ), and single-phase (C v) molar heat capacities. The C data were used to estimate vapor pressures for values less than 100 kPa by applying a thermodynamic relationship between the saturated liquid heat capacity and the temperature derivatives of the vapor pressure. Due to the tendency of both R123 and R124 to subcool, the triple-point temperature (T tr) and the enthalpy of fusion ( fus H) could not be measured. The principal sources of uncertainty are the temperature rise measurement and the change-of-volume work adjustment. The expanded uncertainty (at the 2 level) for C v is estimated to be 0.7%, for C (2) v it is 0.5%, and for C it is 0.7%.  相似文献   

2.
The stress exponent of steady state creep,n, and the internal ( i) and effective stresses ( e) have been determined using the strain transient dip test for a series of polycrystalline Al-Mg alloys creep tested at 300° C and compared with previously published data. The internal or dislocation back stress, i, varied with applied stress,, but was insensitive to magnesium content of the alloy, being represented by the empirical equation i=1.084 1.802. Such an applied stress dependence of i can be explained by using an equation for i of the form i (dislocation density)1/2 and published values for the stress dependence of dislocation density. Values of the friction stress, f, derived using the equation e/=(1–c) (1– f/), indicate that f is not dependent on the magnesium content. A constant value of f can best be rationalized by postulating that the creep dislocation structure is relatively insensitive to the magnesium content of the alloy.On leave from Engineering Materials Department, University of Windsor, Windsor, Ontario N9B 3P4, Canada.  相似文献   

3.
Mechanical properties of tensile strength, , upper yield stress, SU, lower yield stress, SL elongation, , area reduction, , Vickers hardness, H v, and impact absorbed energy, E, were examined using 50 specimens of S35C carbon steel, which were machined from two bars supplied from the same charged and heat-treated material. Distribution characteristics of these properties are discussed, and the correlation between each pair of them is investigated from a statistical viewpoint. The main conclusions obtained are summarized as follows; distribution characteristics of B, SL, , , H v and E are well approximated by a normal distribution, but those of asu are not approximated as well by this type of distribution. In the latter case, a Weibull distribution is preferable to represent the distribution pattern. No significant correlation was observed between each pair of the above mechanical properties. Consequently, individual properties have the inherent distribution characteristics independent of the other properties.  相似文献   

4.
The interfacial properties of a glass-ceramic matrix composite (SiC/CAS) were determined from single-fibre push-out tests using the interfacial test system. The coefficient of friction, , the residual clamping stress, c, and fibre axial residual stress, z , were extracted by fitting the experimental stress versus fibre-end displacement curves using the models of Hsueh, and Kerans and Parthasarathy. Using Hsueh's model, the intrinsic interfacial frictional stress (=c) was found to be 11.1±3.2 MPa, whereas by using Kerans-Parthasarathy's model it was found to be 8.2±1.5 MPa. Comparisons between these models are included, together with a discussion of data analysis techniques.Nomenclature z Axial fibre residual stress (Pa) - * Effective clamping stress (Pa) - c Residual clamping stress (Pa) - p Poisson's effect-induced clamping stress (Pa) - d 0 Debond stress in the absence of residual stresses (Pa) - d Experimental debond stress (Pa) - Compressive applied stress (Pa) - Interfacial shear stress (Pa) - u Fibre-end displacement (m) - h Debond length (m) - r Fibre radius (m) - E f Fibre Young's modulus (Pa) - E m Matrix Young's modulus (Pa) - v f Fibre Poisson's ratio (dimensionless) - v m Matrix Poisson's ratio (dimensionless) - f Fibre volume fraction (dimensionless) - k Parameter (dimensionless) - D Parameter (dimensionless) - Interfacial coefficient of friction (dimensionless) - G i Interface toughness (J m–2) - C m Load-train compliance (m N–1)  相似文献   

5.
The effect of antimony on the creep behaviour (dislocation creep) of a 25 wt% Cr-20 wt% Ni stainless steel with ~ 0.005 wt% C was studied with a view to assessing the segregation effect. The antimony content of the steel was varied up to 4000 ppm. The test temperature range was 1153 to 1193 K, the stress range, 9.8 to 49.0 MPa, and the grain-size range, 40 to 600m. The steady state creep rate, , decreases with increasing antimony content, especially in the range of intermediate grain sizes (100 to 300m). Stress drop tests were performed in the secondary creep stages and the results indicate that antimony causes dislocations in the substructure to be immobile, probably by segregating to them, reducing the driving stress for creep.Nomenclature a Creep stress in a constant load creep test without stress-drop - A Initial applied stress in stress-drop tests - Stress decrement - ( A-) Applied stress after a stress decrement, - t i Incubation time after stress drop (by the positive creep) - C Strain-arrest stress - i Internal stress - s s-component (= i- c) - Steady state creep rate (average value) in a constant load creep test - Strain rate at time,t, in a constant load creep test - New steady state creep rate (average value) after stress drop from A to ( A-) - Strain rate at time,t, after stress drop.  相似文献   

6.
The tensile, compressive and shear yield strengths of two epoxides were measured under superposed hydrostatic pressure extending to 300 MN m–2. For both materials, the ratio of the moduli of the tensile, T, to compressive, C, yield stress at atmospheric pressure was approximately 34, as has been reported previously for a number of thermoplastics. The 2= 3 envelope in stress space was plotted according to these two-parameter ( C and T) yield criteria: conical, paraboloidal and pyramidal; the best correlation was with the last. The experimental tensile and compressive data for tests under pressure, however, fit slightly better two straight lines which are consistent with a three-parameter single hexagonal pyramidal yield surface. For plane stress and shear under pressure yield envelopes of these surfaces, the correlation with experimental data is again best for the pyramidal criteria, except for biaxial or triaxial tension when these resins are brittle. The third independent parameter employed in the pyramidal criterion was the equi-biaxial compressive yield stress, determined by tensile experiments under appropriate superposed hydrostatic pressure; alternatively plane strain compressive yield stress, PC, may be used.  相似文献   

7.
Molar heat capacities at constant volume (C v) of 1,1-difluoroethane (R152a) and 1,1,1-trifluoroethane (R143a) have been measured with an adiabatic calorimeter. Temperatures ranged from their triple points to 345 K, and pressures up to 35 MPa. Measurements were conducted on the liquid in equilibrium with its vapor and on compressed liquid samples. The samples were of high purity, verified by chemical analysis of each fluid. For the samples, calorimetric results were obtained for two-phase ((C v (2) ), saturated-liquid (C or C x ' ), and single-phase (C v) molar heat capacities. The C data were used to estimate vapor pressures for values less than 105 kPa by applying a thermodynamic relationship between the saturated liquid heat capacity and the temperature derivatives of the vapor pressure. The triple-point temperature and the enthalpy of fusion were also measured for each substance. The principal sources of uncertainty are the temperature rise measurement and the change-of-volume work adjustment. The expanded relative uncertainty (with a coverage factor k=2 and thus a two-standard deviation estimate) for C v is estimated to be 0.7%, for C v (2) it is 0.5%, and for C it is 0.7%.  相似文献   

8.
Ductile L20-type wires and+L12-type duplex wires with high strengths and large elongation in the Ni-Al-Fe and Ni-Al-Co ternary systems have been manufactured directly from the liquid state by an in-rotating-water spinning method. The wire diameter was in the range 80 to 180m and the average grain size was 2 to 4m for the wires and 0.2 to 1.0m for the+ wires. y, f and p of the wires were found to be about 360 to 760 MPa, 560 to 960 MPa, and 0.2 to 5.5%, respectively, for the Ni-Al-Fe system, those of the+ wires were about 395 to 660 MPa, 670 to 1285 MPa, and 3.5 to 17%, respectively, for the Ni-Al-Fe system, and about 260 to 365 MPa, 600 to 870 MPa, and 4.0 to 7.0%, respectively, for the Ni-Al-Co system. Cold-drawing caused a significant increase in y and f and the values attained were about 1850 and 2500 MPa, respectively, for Ni-20Al-30Fe and Ni-25Al-30Co wires drawn to about 90% reduction in area. The high strengths, large elongation and good cold-workability of the melt-quenched and+ compound wires have been inferred to be due to the structural change into a low-degree ordered state containing a high density of phase boundaries, suppression of grain-boundary segregation and refinement of grain size.  相似文献   

9.
Based on a theoretical model developed previously by the authors in Part II of this series for a single fibre pull-out test, a methodology for the evaluation of interfacial properties of fibre-matrix composites is presented to determine the interfacial fracture toughness G c, the friction coefficient , the radial residual clamping stress q o and the critical bonded fibre length z max. An important parameter, the stress drop , which is defined as the difference between the maximum debond stress d * and the initial frictional pull-out stress fr, is introduced to characterize the interfacial debonding and fibre pull-out behaviour. The maximum logarithmic stress drop, In(), is obtained when the embedded fibre length L is equal to the critical bonded fibre length z max. The slope of the In()-L curve for L bigger than z max is found to be a constant that is related to the interfacial friction coefficient . The effect of fibre anisotropy on fibre debonding and fibre pull-out is also included in this analysis. Published experimental data for several fibre-matrix composites are chosen to evaluate their interfacial properties by using the present methodology.On leave at the Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.  相似文献   

10.
Shallow cavity flows driven by horizontal temperature gradients are analysed over a range of Rayleigh numbersR and Prandtl numbers , whereR is comparable in size to the aspect ratioL(1). Eigenvalue calculations show the existence of a critical Prandtl number R > R c (), below which the parallel core-flow structure is destroyed for Rayleigh numbersR>R c(). For other Rayleigh numbers and Prandtl numbers the horizontal scale of influence of the end walls of the cavity is determined.  相似文献   

11.
The two-site model is developed for the analysis of stress relaxation data. It is shown that the product of d In (– )/d and (- i) is constant where is the applied stress, i is the (deformation-induced) internal stress and = d/dt. The quantity d In ( )/d is often presented in the literature as the (experimental) activation volume, and there are many examples in which the above relationship with (- i) holds true. This is in apparent contradiction to the arguments that lead to the association of the quantity d In (– )/d with the activation volume, since these normally start with the premise that the activation volume is independent of stress. In the modified theory presented here the source of this anomaly is apparent. Similar anomalies arise in the estimation of activation volume from creep or constant strain rate tests and these are also examined from the standpoint of the site model theory. In the derivation presented here full account is taken of the site population distribution and this is the major difference compared to most other analyses. The predicted behaviour is identical to that obtained with the standard linear solid. Consideration is also given to the orientation-dependence of stress-aided activation.  相似文献   

12.
Molar heat capacities at constant volume (C v) of trifluoromethane (R23) have been measured with an adiabatic calorimeter. Temperatures ranged from the triple point to 342 K, and pressures up to 33.5 MPa. Measurements were conducted on the liquid in equilibrium with its vapor and on compressed liquid and gaseous samples. The samples were of high purity, as verified by chemical analysis. Calorimetric quantities are reported for the two-phase (C (2) v), saturated-liquid (C or Cx), and single-phase (C v) molar heat capacities. The C (2) v data were used to estimate vapor pressures for values less than 100 kPa by applying a thermodynamic relationship between the two-phase internal energy U (2) and the temperature derivatives of the vapor pressure. The triple-point temperature and the enthalpy of fusion were also measured. The principal sources of uncertainty are the temperature rise measurement and the change-of-volume work adjustment. The expanded relative uncertainty (with a coverage factor k=2 and thus a two-standard deviation estimate) is estimated to be 0.7% for C v, 0.5% for C (2) v, and 0.7% for C .  相似文献   

13.
The strength and ductility of an Al-6 wt % Zn-1.2 wt % Mg alloy at low temperatures have been investigated by varying the grain size, the amount of grain-boundary precipitate and the nature of the precipitates in the matrix. Pronounced grain-boundary embrittlement has been observed at temperatures below — 100° C in alloys age-hardened by GP zones and especially in coarse-grained alloy specimens, but was not observed in over-aged specimens. From the condition for plastic instability related to the grain-boundary micro-cracking, the temperature and structure dependences of the ultimate tensile properties are expressed by; ( io)/i= u/n + C, where i is the instability stress (true ultimate tensile strength), 0 the 0.2% proof stress, u the uniform elongation, n a constant found to be about 1/2 and C a constant related to the work-hardening rate of the matrix.  相似文献   

14.
A new iterative method for elastic-plastic stress analysis based on a new approximation of the constitutive equations is proposed and compared with standard methods on the accuracy and the computational time in a test problem. The proposed method appears to be better than the conventional methods on the accuracy and comparable with others on the computational time. Also the present method is applied to a crack problem and the results are compared with experimental ones. The agreement of both results are satisfactory.List of symbols u = (u 1, u 2) displacements u (H) = u (n+1) - u (n) u k (n) = u (k (n + 1) - u (n) (n, k = 0, 1, 2, ...) - = 11, 22, 12) stresses - = (11, 22, 12) strains - = (11, 22, 12) center of yield surface - D elastic coeffficient matrix, C = D –1 - von Mises yield function. The initial yielding is given by f() = Y - f {f/} - * transposed f - H hardening parameter (assumed to be a positive constant for kinematic hardening problems) - time derivative of - [K] total elastic stiffness matrix - T traction vector - = [B] relation between nodal displacements and strains  相似文献   

15.
The variation of the d.c. electrical conductivity, , with composition and temperature was investigated for glasses of the Ge-In-Se system. The results indicate a decrease in the activation energy for electrical conductivity, E, and an increase in on introduction of indium into Ge-Se glasses. The changes in E and with composition (selenium content in the glasses) are identical for the Gex In5 Se95–x and Gex In8Se92–x families. The results have been traced to the conduction controlled by charged defects in these chalcogenide glasses. The changes in E and have been explained by a shift in the Fermi level, being brought by the introduction of indium.  相似文献   

16.
The dielectric constants and loss factors,, for pure single-crystal MgO and for Fe-and Cr-doped crystals have been measured at frequencies, , from 500 Hz to 500 kHz at room temperature. For pure MgO at 1 kHz the values of and the loss tangent, tan , (9.62 and 2.16×10–3, respectively) agree well with the data of Von Hippel; the conductivity, , varies as n withn=0.98±0.02. In Fe-doped crystals increases with Fe-concentration (at any given frequency); for a crystal doped with 12800 ppm Fe, was about four times the value for pure MgO. At all concentrations the variation of log with log was linear andn=0.98±0.02. A decrease in with increasing Fe-concentration was also observed. A similar, although less pronounced, behaviour was found in Cr-doped crystals. The effects are discussed in terms of hopping mechanisms.  相似文献   

17.
Measurements of the dynamic tensile strength of HR-2 (Cr-Ni-Mn-N) stainless steel have been carried out over the initial temperature range of 300 K–1000 K at shock stress of 8 GPa, the corresponding spall strength f and Hugoniot elastic limit HEL are determined from the wave profiles. In the temperature range of 300 K–806 K, f and HEL decrease linearly with increasing temperature T, i.e., f = 5.63-4.32 × 10–3T, HEL = 2.08-1.54 × 10–3T, but when heated to 980 K, HEL increases from 0.84 GPa at 806 K to 0.93 GPa at 980 K and f keeps at an almost fixed value of 2.15 GPa. The TEM analysis on recovery samples identified the existence of intermatallic compound Ni3Al and the carbide Cr23C6 in the sample of 806 K, another intermatallic compound Ni3Ti was found in the sample of 980 K. All these products emerge along crystal boundary. While no such products were found in the samples of 300 K and 650 K.  相似文献   

18.
The fatigue and fracture behaviour of two titanium alloys, the near-alpha IMI-685 and alpha-beta IMI-318, were studied in the machined and polished (MP) as well as the machined, polished and shot (glass-bead) peened (MPS) conditions. Glass-bead peening reduced the room-temperature as well as the high-temperature (450°C) fatigue life of alloy IMI-685 at high stress amplitudes, a, approaching the proof stress, ps, of the material (LCF region). When the applied stress amplitude (0–770 MPa, HCF region) was comparable to the peen-induced peak longitudinal residual stress, LP, i.e. (LP/a)=0.92, an improvement in the room-temperature fatigue life of IMI-685 was observed. When the (LP/a) ratio was less than this value, decreases in the fatigue life were seen. The room-temperature fatigue behaviour of IMI-318 at high stress amplitudes was similar to that of IMI-685. The decrease in the fatigue life of this alloy, at a stress amplitude (770 MPa) where improvement was observed for IMI-685, could be attributed to the higher relaxation of peen-induced residual stresses in IMI-318 compared with IMI-685. Glass-bead peening improved the hightemperature (450°C) fatigue life of IMI-685 at a low stress amplitude (465 MPa; (a/PS)=0.87). The crack-initiation sites in the MP and the MPS conditions were at the surface for both the alloys. However, fracture in the surface layers of the alloys appeared more brittle in the peened (MPS) rather than in the unpeened (MP) condition.  相似文献   

19.
Elastic-plastic two-dimensional (2D) and three-dimensional (3D) finite element models (FEM) are used to analyze the stress distributions ahead of notches of four-point bending (4PB) and three-point bending (3PB) specimens with various sizes of a C-Mn steel. By accurately measuring the location of the cleavage initiation sites, the local cleavage fracture stress f and the macroscopic cleavage fracture stress F is accurately measured. The f and F measured by 2D FEM are higher than that by 3D FEM. f values are lower than the F, and the f values could be predicted by f=(0.8––1.0)F. With increasing specimen sizes (W,B and a) and specimen widths (B) and changing loading methods (4PB and 3PB), the fracture load P f changes considerably, but the F and f remain nearly constant. The stable lower boundary F and f values could be obtained by using notched specimens with sizes larger than the Griffiths–Owen specimen. The local cleavage fracture stress f could be accurately used in the analysis of fracture micromechanism, and to characterize intrinsic toughness of steel. The macroscopic cleavage fracture stress F is suggested to be a potential engineering parameter which can be used to assess fracture toughness of steel and to design engineering structure.  相似文献   

20.
The singularity in the vapor-liquid interfacial tension, (T), of helium at the transition to superfluidity is analyzed theoretically. The universal amplitude ratio R + =K+( 0 + )d–1/k B T , where K+ and K are the amplitudes of the |T–T|µ singularity in , with =1.34 3 , is known from recent work to first order in =4–d for the general n-vector model in d dimensions. Extrapolation to d=3 for n=2 indicates R + =0.05–0.08, which is shown to be consistent with the experimental data. Further analysis of the experiments establishes that the universal ratio Q=K+/K exceeds 0.35, and is consistent with the recent prediction Q0.9; this demonstrates the inadequacies of earlier theoretical treatments. The existence in the observed surface tension of an anomalous, negative contribution of unknown origin at a few millikelvin beneath T is stressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号