首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of microstructure and coefficient of thermal expansion (CTE) of the Al–50Si (wt.%) alloy manufactured by spray deposition followed by hot isostatic pressing (HIP) are systematically investigated. The results indicate that the microstructure of the deposited alloy is composed of primary Si with average size of 12.5 ± 0.1 μm and α-Al. The CTE of the deposited alloy is higher than the corresponding alloy produced by casting due to the high solid solubility of Al in Si. After HIP, the CTE is lower than the parent as-deposited alloy owing to the high solid solubility of Si in Al. The residual thermal stress results in a higher CTE during the second heating as a result of the CTE mismatch between the Al matrix and the primary Si particles. Furthermore, the measured CTE value is in good agreement with the Turner model after complete densification by HIP at 843 K.  相似文献   

2.
3.
ABSTRACT

The objective of this study was to find out how Si precipitation affects the linear thermal expansion behaviors of Al–Si alloys with various Si content. These Al–Si alloys were manufactured by gravity casting using 99.98?wt-% pure Al and 98.5?wt-% Si pellets. Solution treatment was carried out at 530°C for 10 h for each specimen. As-quenched specimens were subjected to microstructure observation and linear thermal expansion analysis. Si precipitation and additional linear thermal expansion occurred at lower temperature when Si content was increased to 9.5?wt-%. The activation energy of Si precipitation was also lower when Si content was higher. Eutectic Si reduced diffusion distance and acted as a nucleation site of dissolved Si atoms in the Al matrix during aging. These Si phases decreased Si precipitation temperature and activation energy of Si precipitation.  相似文献   

4.
The microstructure and solidification behavior of Cu–Ni–Si alloys with four different Cu contents was studied systematically under near-equilibrium solidification conditions. The microstructures of these Cu–Ni–Si alloys were characterized by SEM and the phase composition was identified by XRD analysis. The phase transition during the solidification process was studied by DTA under an Ar atmosphere. The results show that the microstructure and solidification behavior is closely related to the composition of Cu–Ni–Si alloys. The microstructure of Cu–Ni–Si alloys with higher than 40% Cu content consists of primary phase α-Cu(Ni, Si) and eutectic phase (β1-Ni3Si + α-Cu(Ni,Si).When the Cu content is about 40%, only the eutectic phase (β1-Ni3Si + α-Cu(Ni,Si)) is present. DTA analysis shows there are three phase transitions during every cooling cycle of alloys with higher than 40% Cu content, but only one for 40% Cu content. Cu–Ni–Si alloy with 40% Cu solidifies by a eutectic reaction, but Cu–Ni–Si alloys with higher than 40% Cu content solidify as a hypoeutectic reaction.  相似文献   

5.
The effects of Zr addition on mechanical property in the aged Al–Mg–Si alloy exposed to thermal-resistant treatment (180–250 °C) have been studied by using both Brinell Hardness tests and tensile tests. The softening process at 180 °C and 230 °C has been investigated by transmission electron microscope (TEM). The Arrhenius Model is introduced to simulate the strength evolution in the thermal-resistant treatment. The results show that tensile strength and thermal-resistant property are improved by addition of Zr, and both the Brinell Hardness and Tensile Strength could maintain no less than 90% of their initial values when the alloy is exposed to heat treatment at 180 °C for 400 h and 230 °C for 2 h. The presence of rod-shaped phases and coarsening particles results in decreasing the hardness of the sample. The relationship between thermal-resistant life and temperature is derived by the Arrhenius Model. When the Al–Mg–Si–Zr alloy is heated at 130 °C, the duration described in the Arrhenius plot could reach to 40 years.  相似文献   

6.
AuSn20 (mass fraction) lead-free solder reacting with the Au/Ni-metalized AlSi50 substrate during reflowing and aging processes were investigated in this study. The single lap shear strength, fracture behavior and microstructure evolution characteristics of the joints are detected. It is found that only a thin (Ni,Au)3Sn2 layer forms at the interface between the AuSn20 solder and Ni metalized AlSi50 alloy. But a composite Intermetallic compound (IMC) layer of (Ni,Au)3Sn2 and (Au,Ni)Sn is formed in the aged joints, due to the continuous interfacial reactions during aging process. The growth of the composite IMC layer is governed by the volume diffusion of the constituent elements at 120, 160 and 200 °C. The shear strength decreases with the increasing aging time and temperature, which is caused primarily by the growth of the IMC layer. The presence of faceted structures on the fracture surfaces of these specimens is indicative of a brittle failure mode for the joints.  相似文献   

7.
An alloying element of 0–1.5 wt.% Si was added to an Fe–42%Ni system, and alloy strips were fabricated using a melt drag casting process. The effects of the Si and annealing treatments on the thermal expansion properties of Fe–42Ni alloy were investigated. The addition of Si enlarged the coexisting temperature region of the solid–liquid phase and reduced the melting point, which improved the formability of the alloy strip. An alloy containing 0.6 wt.% Si had a lower thermal expansion coefficient than any other alloy in the temperature range from 20 to 350 °C. The grain size increased with the rolling reduction ratio and annealing temperature, which caused an increase in magnetostriction and consequently a decrease in the thermal expansion coefficient of the strip. The alloy strip containing 1.5 wt.% Si had a higher thermal expansion coefficient than the alloy containing 0.6 wt.% Si because of grain refining caused by the precipitation of Ni3Fe.  相似文献   

8.
The microstructure and tensile properties at temperatures up to 300 °C of an experimental Al–7Si–1Cu–0.5Mg (wt.%) cast alloy with additions of Ti, V and Zr were assessed and compared with those of the commercial A380 grade. The microstructure of both alloys consisted of Al dendrites surrounded by Al–Si eutectic containing, within its structure, the ternary Al–Al2Cu–Si phase. Whereas the Al15(FeCrMn)3Si2 phases were present in the A380 alloy, Ti/Zr/V together with Al and Si phases, Al(ZrTiV)Si, were identified in the experimental alloy. As a result of chemistry modification the experimental alloy achieved from 20% to 40% higher strength and from 1.5 to 5 times higher ductility than the A380 reference grade. The role of chemistry in improving the alloy thermal stability is discussed.  相似文献   

9.
Creep behavior of an Mg–6Al–1Zn–0.7Si cast alloy was investigated by compression and impression creep test methods in order to evaluate the correspondence of impression creep results and creep mechanisms with conventional compression test. All creep tests were carried out in the temperature range 423–523 K and under normal stresses in the range 50–300 MPa for the compression creep and 150–650 MPa for impression creep tests. The microstructure of the AZ61–0.7Si alloy consists of β-Mg17Al12 and Mg2Si intermetallic phases in the α-Mg matrix. The softening of the former at high temperatures is compensated by the strengthening effect of the latter, which acts as a barrier opposing recovery processes. The impression results were in good agreement with those of the conventional compressive creep tests. The creep behavior can be divided into two stress regimes, with a change from the low-stress regime to the high-stress regime occurring, depending on the test temperature, around 0.009 < (σ/G) < 0.015 and 0.021 < (σimp/G) < 0.033 for the compressive and impression creep tests, respectively. Based on the steady-state power-law creep relationship, the stress exponents of about 4–5 and 10–12 were obtained at low and high stresses, respectively. The low-stress regime activation energies of about 90 kJ mol−1, which are close to that for dislocation pipe diffusion in the Mg, and stress exponents in the range of 4–5 suggest that the operative creep mechanism is pipe-diffusion-controlled dislocation viscous glide. This behavior is in contrast to the high-stress regime, in which the stress exponents of 10–12 and activation energies of about 141 kJ mol−1 are indicative of a dislocation climb mechanism similar to those noted in dispersion strengthening mechanisms.  相似文献   

10.
The coefficient of thermal expansion (CTE) of stir cast Al–Mg alloy A535 and its composites reinforced with a mixture of 5 wt.% fly ash and 5 wt.% silicon carbide, 10 wt.% and 15 wt.% fly ash particles was investigated using thermomechanical analysis (TMA). Micromechnical models proposed by Turner, Kerner and Schapery as well as the rule of mixture (ROM) were employed to compute the CTEs of the composites within the same temperature range. Experimental results showed that the CTE of A535 decreased with the addition of fly ash and SiC particles. Subjecting the test samples to a second re-heat cycle also affected their CTE response. The CTE obtained for A535 during the first heating cycle was higher than that obtained during the re-heat cycle whereas the reverse result was obtained for the fly ash composites. Furthermore, the analytical models could not predict the experimental CTEs the composites due to complexities arising from the presence of porosities, reaction products and other defects.  相似文献   

11.
The microstructure and mechanical properties of rapidly solidified Al–18 wt% Si and Al–18 wt% Si–5 wt% Fe alloys were investigated by a combination of optical microscopy, scanning electron microscopy, transmission electron microscopy, x-ray diffraction, tensile testing, and wear testing. The centrifugally atomized binary alloy powder consisted of the -Al (slightly supersaturated with Si) and Si phases and the ternary alloy powder consisted of the -Al (slightly supersaturated with Si), silicon, and needle-like metastable Al–Fe–Si intermetallic phases. During extrusion the metastable -Al4FeSi2 phase in the as-solidified ternary alloy transformed to the equilibrium -Al5FeSi phase. The tensile strength of both the binary and the ternary alloys decreased with a high-temperature exposure, but a significant fraction of the strength was retained up to 573 K. The specific wear gradually increased with increasing sliding speed but decreased with the addition of 5 wt% Fe to the Al–18 wt% Si alloy. The wear resistance improved with annealing due to coarsening of the silicon particles.  相似文献   

12.
13.
The effect of Sc on the microstructure and mechanical properties of Al–Si–Mg–Cu–Ti alloy was investigated. Results obtained in this research indicate that, with increasing Sc content, the microstructure of the investigated alloys exhibits finer equiaxed dendrites with rounded edges and the morphology of the eutectic Si shows a complete transition from a coarse needle-like structure to a fine fibrous structure upon modification of eutectic Si. Subsequent T6 heat treatment had further induced the precipitation of nano-scaled secondary Al3(Sc, Ti) phase, as well as spheroidisation of eutectic Si. Combined with T6 heat treatment, the ultimate tensile strength, yield strength, percentage elongation and hardness were achieved in 0.20?wt-% Sc-modified alloy.  相似文献   

14.
In this article, early failure reasons and their sources for the bare aerial transmission line conductors have been presented with a combination of measuring data on wear tendency of their components and analyzing of collected samples due to processing damages and continue cast defects onto wires produced by 99.7% EC grade Al and Al–Mg–Si alloys. Nominal service life of aerial conductors is 30 years. However most of them are failed early. Essential source of the failure depends on environmental conditions and manufacturing process. After installation of conductors to trusses, the fretting phenomenon between strands under greased and non-greased applications is triggered due to fluctuation of bending, tension and torsional stresses by wind and dead loads of conductors. Environmental forcing functions cause working of surfaces of defected and processing damaged wires each other with small displacements and create grinding of small particles and finally fretting. Samples collected from the aerial conductor plant including processing defects and damages were illustrated and interpreted in the article deeply. Additionally, tribological behaviors of conductor wires were also investigated with different parameters under grease lubrication and dry friction conditions. Results were presented in graphics and figures in details to indicate the early failure reasons which were mainly related to manufacturing process and tooling used in processing of them.  相似文献   

15.
Abstract

Blown-powder laser surface alloying was performed on the magnesium alloy AZ91D with Al–Si alloy powder to improve corrosion resistance. Characterization by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD) analysis revealed that intermetallic compounds (IMCs) of Mg2Si, Al12Mg17 and Al3Mg2 were formed in the matrix of α-Mg and Al solid solutions in Al–Si alloyed layers. The anodic polarization test in 3.5% NaCl aqueous solution showed that preferential corrosion occurred in the α-Mg matrix of the AZ91D base metal. The Al–Si alloyed layers exhibited a lower corrosion rate and a higher polarization resistance than AZ91D. The compactly dispersed dendritic Mg2Si phase, and the dendritic and angular phases of Al12Mg17 and Al3Mg2 in the alloyed microstructure were observed to be corrosion-resistant, constituting a barrier that retards corrosion. Corrosion initiated at the interface between IMCs and the solid solution matrix, and at substructures of the matrix, subsequently pervaded into the surrounding microstructure.  相似文献   

16.
Blown-powder laser surface alloying was performed on the magnesium alloy AZ91D with Al–Si alloy powder to improve corrosion resistance. Characterization by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD) analysis revealed that intermetallic compounds (IMCs) of Mg2Si, Al12Mg17 and Al3Mg2 were formed in the matrix of α-Mg and Al solid solutions in Al–Si alloyed layers. The anodic polarization test in 3.5% NaCl aqueous solution showed that preferential corrosion occurred in the α-Mg matrix of the AZ91D base metal. The Al–Si alloyed layers exhibited a lower corrosion rate and a higher polarization resistance than AZ91D. The compactly dispersed dendritic Mg2Si phase, and the dendritic and angular phases of Al12Mg17 and Al3Mg2 in the alloyed microstructure were observed to be corrosion-resistant, constituting a barrier that retards corrosion. Corrosion initiated at the interface between IMCs and the solid solution matrix, and at substructures of the matrix, subsequently pervaded into the surrounding microstructure.  相似文献   

17.
Hybrid fiber laser-Metal Inert Gas (MIG) welding is an advanced joining technology that is increasingly employed in the modern industry. In this paper, hybrid fiber laser-MIG welding was applied to join 5 mm thick AA6005-T5 alloy used in the carbody of high-speed railway vehicles. The mechanical properties of the hybrid welded joints were investigated. The results showed that the hybrid welded joints have more excellent mechanical properties than that of the MIG joints. However, there is still strength loss in the hybrid welded joins comparing with the base metal. The reason for the loss of the strength was studied from the aspects of microstructure and vaporization of strengthening elements.  相似文献   

18.
The microstructure, hot cracking susceptibility, and mechanical properties of a novel Al–Cu–Y alloy were investigated. The Al–4.7Cu–1.6Y alloy demonstrated very good casting properties, hot cracking susceptibility that is similar to Al–Si–Mg alloys. Analysis of the solidification process showed that the primary Al solidification is followed by the eutectic reaction Liquid→τ1(Al8Cu4Y)+Al and the peritectic reactions Liquid+τ6(Al,Cu)11Y3)→Al+τ1(Al8Cu4Y) (612°C) and Liquid+η(AlCu)→τ1(Al8Cu4Y)+θ(Al2Cu) (595°C). The τ1(Al8Cu4Y) eutectic phase demonstrated high thermal stability during homogenisation treatment. The recrystallisation temperature was in the range 250–350°C after rolling with previous quenching at 540 and 590°C and without heat treatment. The recommended annealing mode for material in the as-rolled condition is 100°C for 1?h: YS?=?273?MPa, UTS?=?305?MPa and El.?=?6.6%.  相似文献   

19.
Abstract

By taking the method of liquid–metal cooled directional solidification, alloys with a nominal composition of Nb–14Si–24Ti–10Cr–2Al–2Hf (at-%) were prepared under different conditions. Alloys were initially directional solidified with different withdrawal rates (R?=?1·2, 6, 18 mm min?1) at 1750°C and subsequently heat treated at 1450°C for 10 h. These processes aimed to investigate the microstructure of directionally solidified (DS) and heat treated (HT) alloys by XRD, SEM, and EDS. The microstructure of DS alloy was composed of (Nb,Ti)SS, (Nb,Ti)5Si3, and Laves phase Cr2Nb, and the former two components formed (Nb,Ti)SS+(Nb,Ti)5Si3 eutectics. In addition, (Nb,Ti)5Si3 laths only presented in DS1·2 alloy. With the increasing withdrawal rates, the microstructure of alloy altered from hypereutectic into pseudo-eutectic, accompanied with the eutectic morphology transformation from petaloid into coupled. Also, the dimension of constituent phases reduced. However, after heat treatment, the constituent phases did not change. The petaloid morphology of eutectics in DS specimens disappeared and coupled eutectic transferred into network. The block or needle-like Cr2Nb gathered along the boundary between (Nb,Ti)5Si3 and (Nb,Ti)SS, and the overall alloy composition became homogenisation.  相似文献   

20.
Nanocrystalline Al–Si alloy-based composites containing carbon nanotubes (CNTs) were produced by hot rolling ball-milled powders. During the milling process, the grain size was effectively reduced and the Si element was dissolved in the Al matrix. Furthermore, CNTs were gradually dispersed into the aluminum powders, providing an easy consolidation route using a thermo-mechanical process. The composite sheet containing 3 vol.% of CNTs shows ~520 MPa of yield strength with a 5% plastic elongation to failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号