首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc oxide (ZnO) thin films are prepared using sol–gel method for acetone vapor sensing. Zinc acetate dihydrate (Zn(CH3COO)2·2H2O) was taken as starting material and a stable and homogeneous solution was prepared in ethanol by deliquescing the zinc acetate and distinct amount of monoethanolamine as a stabilizing agent. The prepared solution was then coated on silicon substrates by spin coating method and then annealed at 650 °C for preparing ZnO thin films. The thickness of the film was maintained at 410 nm. The structural, morphological and optical studies were done for the synthesized ZnO thin films. The operating temperature and sensor response is considered to be an important parameter for the gas sensing behavior of any material. Therefore, the present study examined the effect of sensing behavior of 3% v/v gold (Au) doped ZnO thin films as a sensor. The response characteristics of 410 nm ZnO thin film for temperature ranging from 180 to 360 °C were determined for the acetone vapors. The reported study provides a significant development towards acetone sensors, where a very high sensitivity with rapid response and recovery times are reported with lowered optimal operating temperature as compared to bare ZnO nano-chains like structured thin films. In comparison to the bare ZnO thin films giving a response of 63 at an operating temperature of 320 °C, a much better response of 132.3 was observed for the Au doped ZnO thin films at an optimised operating temperature of 280 °C for a concentration of 500 ppm of acetone vapors.  相似文献   

2.
BiFeO3 (BFO) and transition metal (Cu, Zn, Mn) doped BFO thin films were successfully fabricated on indium tin oxide (ITO)/glass substrate using sol–gel process, spin coating and layer by layer technique. Compared to the pure BFO thin film, improved ferroelectric and leakage current properties were observed in the transition metal doped BFO thin films. The transition metal (Cu, Zn, Mn) doped BFO thin films have varying degrees of lower leakage current compared with the pure BFO film. The substitution of Cu and Zn increase the remnant polarization of BFO thin films. The values of remnant polarization (2Pr) were 120.6 and 126.7 μC/cm2 at 933 kV/cm for Cu-doped and Zn-doped BFO thin film, respectively.  相似文献   

3.
N-doped and Al–N codoped ZnO thin films with different volume ratios of N2 reactive gas were deposited on plane glass substrates using the radio frequency magnetron sputtering method. The phase transition temperature and absorption edge of the ZnO powder were studied by differential scanning calorimetry at different heating rates and with Fourier transform infrared spectroscopy, respectively. The target used for the sputtering was synthesized using a palletize machine. It was sintered at 450 °C for 5 h. The X-ray diffraction results confirm that the thin films have wurtzite hexagonal structures with a very small distortion. The results indicate that the ZnO thin films have obviously enhanced transmittance of up to 80% on an average in the visible region. The Al–N codoped ZnO thin films exhibited the best p-type conductivity with a resistivity of 0.825 Ω-cm, a hole concentration of 6.55 × 1019 cm?3, and a Hall mobility of 1.25 cm2/Vs. The p-type conductivity was observed after doping and codoping of the ZnO thin film.  相似文献   

4.
In this work, ZnO:Al–N/ZnO:Al and ZnO:Ag–N/ZnO:Al homojunctions were deposited by means of spin coating method using precursors obtained by sol gel chemistry. The optical, structural and electrical properties of spin coated undoped and M-doped ZnO thin films (M?=?Al, Ag–N and Al–N) using ammonium hydroxide as a nitrogen source are reported. The films showed the wurtzite type structure with a c-axis (002) preferential orientation. The films showed a surface morphology consisting of wrinkles, which were constituted of nanocrystals in the range of ~?20 nm. The thin films were highly transparent in the visible region of the electromagnetic spectrum. The optical band gap of the films was close to 3.30 eV. Hall Effect measurements indicated that undoped and Al doped ZnO thin films showed an n-type conductivity, whereas ZnO:Al–N and ZnO:Ag–N thin films exhibited p-type conductivity, probably related to the formation of dual acceptor complexes related to nitrogen. Two types of p–n homojunctions (ZnO:Al–N/ZnO:Al and ZnO:Ag–N/ZnO:Al) were fabricated by means of sol–gel spin-coating method. In both cases, a rectifying behavior was observed, as revealed by current–voltage measurements.  相似文献   

5.
Aluminium doped zinc oxide thin films were deposited onto glass substrate using spin coating technique. The effects of Al doping on structural, optical and electrical properties of these films were investigated. X-ray diffraction analysis showed that all the thin films were of polycrystalline hexagonal wurtzite structure with (002) as preferential orientation except 2 at.% of Al doped ZnO films. The optical band gap was found to be 3.25 eV for pure ZnO film. It increases up to 1.5 at.% of Al doping (3.47 eV) and then decreased slightly for the doping level of 2 at.% (3.42 eV). The reason for this widening of the optical band gap up to 1.5 at.% is well described by Burstein–Moss effect. The photoluminescence spectra of the films showed that the blue shift and red shift of violet emission were due to the change in the radiative centre between zinc vacancy and zinc interstitial. Variation in ZnO grain boundary resistance against the doping concentration was observed through AC impedance study.  相似文献   

6.
Al-doped zinc oxide (AZO) thin films are prepared on polycrystalline fluorine-doped tin oxide-coated conducting glass substrates from nitrates baths by the electrodeposition process at 70 °C. The electrochemical, morphological, structural and optical properties of the AZO thin films were investigated in terms of different Al concentration in the starting solution. It was found that the carrier density of AZO thin films varied between ?3.11 and ?5.56 × 1020 cm?3 when the Al concentration was between 0 and 5 at.%. Atomic force microscopy images reveal that the concentration of Al has a very significant influence on the surface morphology and roughness of thin AZO. X-ray diffraction spectra demonstrate preferential (002) crystallographic orientation having c-axis perpendicular to the surface of the substrate and average crystallites size of the films was about 33–54 nm. With increasing Al doping, AZO films have a strong improved crystalline quality. As compared to pure ZnO, Al-doped ZnO exhibited lower crystallinity and there is a shift in the (002) diffraction peak to higher angles. Due to the doping of Al of any concentration, the films were found to be showing >80 % transparency. As Al concentration increased the optical band gap was also found to be increase from 3.22 to 3.47 eV. The room-temperature photoluminescence spectra indicated that the introduction of Al can improve the intensity of ultraviolet (UV) emission, thus suggesting its greater prospects in UV optoelectronic devices. A detailed comparison and apprehension of electrochemical, optical and structural properties of ZnO and ZnO:Al thin films is done for the determination of optimum concentration of Al doping.  相似文献   

7.
Nanostructured ZnO thin films have been deposited using a successive chemical solution deposition method. The structural, morphological, electrical and sensing properties of the films were studied for different concentrations of Al-dopant and were analyzed as a function of rapid photothermal processing temperatures. The films were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron and micro-Raman spectroscopy. Electrical and gas sensitivity measurements were conducted as well. The average grain size is 240 and 224 Å for undoped ZnO and Al-doped ZnO films, respectively. We demonstrate that rapid photothermal processing is an efficient method for improving the quality of nanostructured ZnO films. Nanostructured ZnO films doped with Al showed a higher sensitivity to carbon dioxide than undoped ZnO films. The correlations between material compositions, microstructures of the films and the properties of the gas sensors are discussed.  相似文献   

8.
In the present study, it has been reported on the effect of Al doping on linear and nonlinear optical properties of ZnO thin films synthesized by spray pyrolysis method. The structural properties of ZnO thin films with different Al doping levels (0–4 wt%) were analyzed using X-ray diffraction (XRD). The results obtained from XRD analysis indicated that the grain size decreased as the Al doping value increased. The UV–Vis diffused refraction spectroscopy was used for calculation of band gap. The optical band gap of Al-doped ZnO (AZO) thin films is increased from 3.26 to 3.31 eV with increasing the Al content from 0 to 4 wt%. The measurements of nonlinear optical properties of AZO thin films have been performed using a nanosecond Nd:YAG pulse laser at 532 nm by the Z-scan technique. The undoped ZnO thin film exhibits reverse saturation absorption (RSA) whereas the AZO thin films exhibit saturation absorption (SA) that shows RSA to SA process with adding Al to ZnO structure under laser irradiation. On the other hand, all the films showed a self-defocusing phenomenon because the photons of laser stay on below the absorption edge of the ZnO and AZO films. The third-order nonlinear optical susceptibility, χ(3), of AZO thin films, was varied from of the order of 10?5–10?4 esu. The results suggest that AZO thin films may be promising candidates for nonlinear optical applications.  相似文献   

9.
The chemical bath deposition method has often been employed to successfully deposit pure and Mg doped ZnO thin films on a glass substrate. The impact of Mg creates a strained stress in ZnO films affecting its structural and optical properties. XRD patterns revealed that all thin films possess a polycrystalline hexagonal wurtzite structure and Mg doped ZnO thin films (002) plane peak position is shifted towards a lower angle due to Mg doping. From the SEM image, it is understood that the Mg doped ZnO thin films are uniformly coated and are seen as dense rods like pillers deposited over the film. The energy dispersive X-ray analysis confirmed the presence of Mg in doped ZnO thin films. The transmittance spectra exhibit that it is possible for Mg doping to enhance ZnO thin films. The optical energy gap of the films was assessed by applying Tauc’s law and it is observed to show an increasing tendency with an improvement in Mg doping concentrations. The optical constants such as reflectance, index of refraction, extinction coefficient and optical conductivity are determined by using transmission at normal incidence of light by using wavelength range of 200–800 nm. In PL spectra, the band edge emission shifted to the blue with increasing amount of Mg doping.  相似文献   

10.
The present study is focused on the copper-doped ZnO system. Bulk copper-doped ZnO pellets were synthesized by a solid-state reaction technique and used as target material in pulsed laser deposition. Thin films were grown for different Cu doped pellets on sapphire substrates in vacuum (5×10?5 mbar). Thin films having (002) plane of ZnO showed different oxidation states of dopants. MH curves exhibited weak ferromagnetic signal for 1–3 % Cu doping but for 5 % Cu doped thin film sample showed the diamagnetic behavior. For deeper information, thin films were grown for 5 % Cu doped ZnO bulk pellet in different oxygen ambient pressures and analyzed. PL measurement at low temperature showed the emission peak in thin films samples due to acceptor-related transitions. XPS results show that copper exists in Cu2+ and Cu+1 valence states in thin films and with increasing O2 ambient pressure the valence-band maximum in films shifts towards higher binding energy. Furthermore, in lower oxygen ambient pressure (1×10?2 mbar) thin films showed magnetic behavior but this vanished for the film grown at higher ambient pressures of oxygen (6×10?2 mbar), which hints towards the decrease in donor defects.  相似文献   

11.
A home-made radio frequency magnetron sputtering is used to systematically study the structural, electrical, and optical properties of aluminum doped zinc oxide (ZnO:Al) thin films. The intensity of the (002) peak exhibits a remarkable enhancement with increasing film thickness. Upon optimization, we achieved low resistivity of 4.2 × 10− 4 Ω cm and high transmittance of ~ 88% for ZnO:Al films. Based on the present experimental data, the carrier transport mechanism is discussed. It is found that the grain boundary scattering needs to be considered because the mean free path of free carrier is comparable to the grain size. The 80 nm-ZnO:Al thin films are then deposited onto low-frequency inductively coupled plasma fabricated silicon solar cells to assess the effect of ZnO:Al thin films on the performance of the solar cells. Optimized ZnO:Al thin films are identified as transparent and conductive oxide thin film layers.  相似文献   

12.
Cu(InAl)Se2 (CIAS) thin films have been prepared by chemical bath deposition technique. Thickness of the prepared films has been measured by gravimetric technique. The structure, composition and optical transition as well as bandgap have been estimated by X-ray diffraction, energy dispersive X-ray analysis and spectrophotometer analysis. Raman analysis has been made on the prepared CIAS thin films to assign the fundamental lattice mode and to confirm the films crystallinity and stoichiometry. PL analysis has been carried out to find the effective mass of holes and electron, dielectric constant, the involved defects and their activation energy. Cu(InAl)Se2-based solar cells with different types of buffer layers such as CdS, CdS:Cu, CdS:In were fabricated. The current and voltage were measured using an optical power meter and an electrometer and the fabricated solar cells were illuminated using 100 mW/cm2 white light under AM1 conditions.  相似文献   

13.
ZnO is a fundamental wide band gap semiconductor. Especially, doped elements change the optical properties of the ZnO thin film, drastically. Doped ZnO semiconductor is a promising materials for the transparent conductive oxide layer. Especially, Zr doped ZnO is a potential material for the high performance TCO. In this paper, ZnO semiconductors were doped with Zr element and microstructural, surface and optical properties of the Zr doped ZnO thin films were investigated. Zr doped ZnO thin films were deposited thermionic vacuum arc (TVA) technique. TVA is a rapid and high vacuum deposition method. A glass, polyethylene terephthalate and Si wafer (111) were used as a substrate material. Zr doped ZnO thin films deposited by TVA technique and their substrate effect investigated. As a results, deposited thin films has a high transparency. The crystal orientation of the films are in polycrystal formation. Especially, substrate crystal orientation strongly change the crystal formation of the films. Substrate crystal structure can change the optical band gap, microstructural properties and deposited layer formation. According to the atomic force microscopy and field emission scanning electron microscopy measurements, all deposited layer shows homogeneous, compact and low roughness. The band values of the deposited thin film were approximately found as to be 3.1–3.4 eV. According to the results, Zr elements created more optical defect and shifted to the band gap value towards to blue region.  相似文献   

14.
Pure, Barium and Nickel doped cadmium sulphide (CdS) thin films have been coated on glass substrates at 400?°C by spray pyrolysis technique. The prepared CdS and doped CdS thin films were analysed by various measurements such as X-ray diffraction (XRD), SEM, optical and Vibrating Sample Magnetometer (VSM). X-ray diffraction measurements show that the coated pure, Ba and Ni-doped CdS thin films belong to the cubic crystal structure with orientation preferentially along (111) direction. The average crystallite size of pure, Ba and Ni doped CdS thin films were determined as 31, 33 and 45 nm, respectively. The average dislocation density (δ) and stacking fault (SF) of pure, Ba and Ni doped CdS thin films were also determined. The surface morphology and elemental analysis of the thin films were determined by scanning electron microscopy and energy dispersive X-ray spectrum (SEM with EDAX). It is observed that the optical energy bandgap has been decreased from 2.43 to 2.1 eV due to the doping Ba. The luminescence spectrum shows a strong emission peak at 517 nm in the case of pure CdS thin film and a meager red shift has been observed due to the doping. VSM studies were employed to study the magnetic behaviour of Ba and Ni doped CdS thin films.  相似文献   

15.
Pure and cerium (Ce) doped tin oxide (SnO2) thin films are prepared on glass substrates by jet nebulizer spray pyrolysis technique at 450 °C. The synthesized films are characterized by X-ray diffraction (XRD), scanning electron microscopy, energy dispersive analysis X-ray, ultra violet visible spectrometer (UV–Vis) and stylus profilometer. Crystalline structure, crystallite size, lattice parameters, texture coefficient and stacking fault of the SnO2 thin films have been determined using X-ray diffractometer. The XRD results indicate that the films are grown with (110) plane preferred orientation. The surface morphology, elemental analysis and film thickness of the SnO2 films are analyzed and discussed. Optical band gap energy are calculated with transmittance data obtained from UV–Visible spectra. Optical characterization reveals that the band gap energy is found decreased from 3.49 to 2.68 eV. Pure and Ce doped SnO2 thin film gas sensors are fabricated and their gas sensing properties are tested for various gases maintained at different temperature between 150 and 250 °C. The 10 wt% Ce doped SnO2 sensor shows good selectivity towards ethanol (at operating temperature 250 °C). The influence of Ce concentration and operating temperature on the sensor performance is discussed. The better sensing ability for ethanol is observed compared with methanol, acetone, ammonia, and 2-methoxy ethanol gases.  相似文献   

16.
In this study, transparent conductive Al doped zinc oxide (ZnO: Al, AZO) thin films with a thickness of 40 nm were prepared on the Corning glass substrate by radio frequency magnetron sputtering. The properties of the AZO thin films are investigated at different substrate temperatures (from 27 to 150 °C) and sputtering power (from 150 to 250 W). The structural, optical and electrical properties of the AZO thin films were investigated. The optical transmittance of about 78 % (at 415 nm)–92.5 % (at 630 nm) in the visible range and the electrical resistivity of 7 × 10?4 Ω-cm (175.2 Ω/sq) were obtained at sputtering power of 250 W and substrate temperature of 70 °C. The observed property of the AZO thin films is suitable for transparent conductive electrode applications.  相似文献   

17.
Pure and aluminum (Al) doped zinc oxide (ZnO and ZAO) thin films have been grown using direct current (dc) magnetron sputtering from pure metallic Zn and ceramic ZnO targets, as well as from Al-doped metallic ZnAl2at.% and ceramic ZnAl2at.%O targets at room temperature (RT). The effects of target composition on the film's surface topology, crystallinity, and optical transmission have been investigated for various oxygen partial pressures in the sputtering atmosphere. It has been shown that Al-doped ZnO films sputtered from either metallic or ceramic targets exhibit different surface morphology than the undoped ZnO films, while their preferential crystalline growth orientation revealed by X-ray diffraction remains always the (002). More significantly, Al-doping leads to a larger increase of the optical transmission and energy gap (Eg) of the metallic than of the ceramic target prepared films.  相似文献   

18.
We present the studies on third-order nonlinear optical properties of Al doped ZnO thin films irradiated with electron beam at different dose rate. Al doped ZnO thin films were deposited on a glass substrate by spray pyrolysis deposition technique. The thin films were irradiated using the 8 MeV electron beam from microtron ranging from 1  kG y to 5  kG y. Nonlinear optical studies were carried out by employing the single beam Z-scan technique to determine the sign and magnitude of absorptive and refractive nonlinearities of the irradiated thin films. Continuous wave He–Ne laser operating at 633 nm was used as source of excitation. The open aperture Z-scan measurements indicated the sample displays reverse saturable absorption (RSA) process. The negative sign of the nonlinear refractive index n2 was noted from the closed aperture Z-scan measurements indicates, the films exhibit self-defocusing property due to thermal nonlinearity. The third-order nonlinear optical susceptibility χ(3) varies from 8.17 × 10−5 esu to 1.39 × 10−3 esu with increase in electron beam irradiation. The present study reveals that the irradiation of electron beam leads to significant changes in the third-order optical nonlinearity. Al doped ZnO displays good optical power handling capability with optical clamping of about ∼5 mW. The irradiation study endorses that the Al doped ZnO under investigation is a promising candidate photonic device applications such as all-optical power limiting.  相似文献   

19.
This paper reports on the structural and optical properties of ZnCuO thin films that were prepared by co-sputtering for the application of p-type-channel transparent thin-film transistors (TFTs). Pure ceramic ZnO and metal Cu targets were prepared for the co-sputtering of the ZnCuO thin films. The effects of the Cu concentration on the structural, optical, and electrical properties of the ZnCuO films were investigated after their heat treatment. It was observed from the XRD measurements that the ZnCuO films with a Cu concentration of 7% had ZnO(002), Cu2O(111), and Cu2O(200) planes. The 7% Cu-doped ZnO films also showed a band-gap energy of approximately 2.05 eV, an average transmittance of approximately 62%, and a p-type carrier density of approximately 1.33 x 10(19) cm-3 at room temperature. The bottom-gated TFTs that were fabricated with the ZnCuO thin film as a p-type channel exhibited an on-off ratio of approximately 6. These results indicate the possibility of applying ZnCuO thin films with variable band-gap energies to ZnO-based optoelectronic devices.  相似文献   

20.
Undoped Zinc oxide (ZnO) and Bismuth doped zinc oxide (ZBO) thin films have been prepared by a simple and inexpensive technique namely ultrasonic spray pyrolysis. Films were prepared from an aqueous solution of zinc acetate on glass and silicon substrates at temperature of 350 °C. Doping is achieved by adding a small amount of Bi(NO3), H2O salt to the starting solution which is mixed thoroughly prior to spraying. The goal of this work is to study the influence of doping (Bi) with different concentrations on the structural, optical, and electrical properties of Bi doped ZnO films. Structural analysis shows that the ZBO layers are polycrystalline with a wurtzite structure and (100) preferential orientation which disappears gradually with increasing doping concentration. The optical transmittance average of all films, regardless the doping concentration, was higher than 80% in the visible range. The obtained films gaps values vary in the range from 3.19 to 3.24 eV and the Urbach energy lies in the range 11 to 530 meV. The measured conductivity, in dark and at room temperature, varies with four order of decade level (from 10?3 to 10+1 (??cm)?1)with increasing Bi doping level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号