首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-rate concatenated coding systems with bandwidth-efficient trellis inner codes and Reed-Solomon (RS) outer codes are investigated for application in high-speed satellite communication systems. Two concatenated coding schemes are proposed. In one the inner code is decoded with soft-decision Viterbi decoding, and the outer RS code performs error-correction-only decoding (decoding without side information). In the other the inner code is decoded with a modified Viterbi algorithm, which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, whereas branch metrics are used to provide reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. The two schemes have been proposed for high-speed data communication on NASA satellite channels. The rates considered are at least double those used in current NASA systems, and the results indicate that high system reliability can still be achieved  相似文献   

2.
A Bidirectional Efficient Algorithm for Searching code Trees (BEAST) is proposed for efficient soft-output decoding of block codes and concatenated block codes. BEAST operates on trees corresponding to the minimal trellis of a block code and finds a list of the most probable codewords. The complexity of the BEAST search is significantly lower than the complexity of trellis-based algorithms, such as the Viterbi algorithm and its list generalizations. The outputs of BEAST, a list of best codewords and their metrics, are used to obtain approximate a posteriori probabilities (APPs) of the transmitted symbols, yielding a soft-input soft-output (SISO) symbol decoder referred to as the BEAST-APP decoder. This decoder is employed as a component decoder in iterative schemes for decoding of product and incomplete product codes. Its performance and convergence behavior are investigated using extrinsic information transfer (EXIT) charts and compared to existing decoding schemes. It is shown that the BEAST-APP decoder achieves performances close to the Bahl–Cocke–Jelinek–Raviv (BCJR) decoder with a substantially lower computational complexity.   相似文献   

3.
Performance of parallel and serial concatenated codes on fading channels   总被引:2,自引:0,他引:2  
The performance of parallel and serial concatenated codes on frequency-nonselective fading channels is considered. The analytical average upper bounds of the code performance over Rician channels with independent fading are derived. Furthermore, the log-likelihood ratios and extrinsic information for maximum a posteriori (MAP) probability and soft-output Viterbi algorithm (SOVA) decoding methods on fading channels are developed. The derived upper bounds are evaluated and compared to the simulated bit-error rates over independent fading channels. The performance of parallel and serial codes with MAP and SOVA iterative decoding methods, with and without channel state information, is evaluated by simulation over independent and correlated fading channels. It is shown that, on correlated fading channels, the serial concatenated codes perform better than parallel concatenated codes. Furthermore, it has been demonstrated that the SOVA decoder has almost the same performance as the MAP decoder if ideal channel state information is used on correlated Rayleigh fading channels.  相似文献   

4.
A soft-decision 8-DPSK modulation format is introducedin a concatenated coding scheme and the performance of the resultingsystem is evaluated over a slow Rayleigh fading HF ionospheric link inthe presence of Additive White Gaussian noise (AWGN). Well-known UngerboeckTCM techniques are used as inner codes and a Reed–Solomon blockcode as outer code. The coded/modulated signal is differentially encodedbefore transmission to combat random phase changes caused by the channel.Soft-decision demodulator's output is used as an input to a modifiedViterbi decoder that calculates the Euclidean distances of the receivedsignal from an 8-PSK constellation adapted to the signal's amplitudevariations. Block interleaving techniques are necessary to randomise longbursts of errors caused by the fading channel. Simulation results showthat significant coding gains are achieved with a minor bandwidth expansionover uncoded, diversity or other coded systems. Finally, theinteresting effects of interleaving on the performance of the proposedsystems are analysed.  相似文献   

5.
基于级联码的信道编译码设计与FPGA实现   总被引:1,自引:0,他引:1  
介绍了RS(255,223)码级联卷积(4,3,3)码编译码器的实现,对于编码和译码端不同的结构特点.分别采用并行和串行结构实现.其中RS译码采用欧几里德算法,卷积译码采用维特比算法.同时给出了该编译码器的FPGA实现,按照自上而下的设计流程,在保证速度的同时最大限度地减少了资源占用.  相似文献   

6.
In order to realize a higher-code-gain forward error correction scheme in mobile satellite communication systems, a novel concatenated coding scheme employing soft decision decoding for not only inner codes but also outer codes (double soft decision, or DSD, concatenated forward error correction scheme) is proposed. Soft-decision outer decoding can improve the bit error probability of inner decoded data. In this scheme, likelihood information from an inner Viterbi decoder is used in the decoding of outer codes. A technique using the path memory circuit status 1.0 ratio for likelihood information is proposed, and is shown to be the most reliable even though it requires the simplest hardware among the alternative methods. A computer simulation clarifies that the DSD scheme improves Pe performance to one-third of that of the conventional hard-decision outer decoding. Moreover, to reduce the interleaving delay time in fading channels or inner decoded data of concatenated codes, a parallel forward error correction scheme is proposed  相似文献   

7.
SISO decoding for block codes can be carried out based on a trellis representation of the code. However, the complexity entailed by such decoding is most often prohibitive and thus prevents practical implementation. This paper examines a new decoding scheme based on the soft-output Viterbi algorithm (SOVA) applied to a sectionalized trellis for linear block codes. The computational complexities of the new SOVA decoder and of the conventional SOVA decoder, based on a bit-level trellis, are theoretically analyzed and derived for different linear block codes. These results are used to obtain optimum sectionalizations of a trellis for SOVA. For comparisons, the optimum sectionalizations for Maximum A Posteriori (MAP) and Maximum Logarithm MAP (Max-Log-MAP) algorithms, and their corresponding computational complexities are included. The results confirm that the new SOVA decoder is the most computationally efficient SISO decoder, in comparisons to MAP and Max-Log-MAP algorithms. The simulation results of the bit error rate (BER) performance, assuming binary phase -- shift keying (BPSK) and additive white Gaussian noise (AWGN) channel, demonstrate that the performance of the new decoding scheme is not degraded. The BER performance of iterative SOVA decoding of serially concatenated block codes shows no difference in the quality of the soft outputs of the new decoding scheme and of the conventional SOVA.  相似文献   

8.
We investigate the decoding region for algebraic soft-decision decoding (ASD) of Reed–Solomon (RS) codes in a discrete, memoryless, additive-noise channel. An expression is derived for the error correction radius within which the soft-decision decoder produces a list that contains the transmitted codeword. The error radius for ASD is shown to be larger than that of Guruswami–Sudan (GS) hard-decision decoding for a subset of low and medium-rate codes. These results are also extended to multivariable interpolation in the sense of Parvaresh and Vardy.   相似文献   

9.
Ma Zhuo  Du Shuanyi 《ETRI Journal》2015,37(4):736-742
A serial concatenated decoding algorithm with dynamic threshold is proposed for low‐density parity‐check codes with short and medium code lengths. The proposed approach uses a dynamic threshold to select a decoding result from belief propagation decoding and order statistic decoding, which improves the performance of the decoder at a negligible cost. Simulation results show that, under a high SNR region, the proposed concatenated decoder performs better than a serial concatenated decoder without threshold with an Eb/N0 gain of above 0.1 dB.  相似文献   

10.
The improved three novel schemes of the super forward error correction(super-FEC) concatenated codes are proposed after the development trend of long-haul optical transmission systems and the defects of the existing FEC codes have been analyzed. The performance simulation of the Reed-Solomon(RS)+Bose-Chaudhuri-Hocguenghem(BCH) inner-outer serial concatenated code is implemented and the conceptions of encoding/decoding the parallel-concatenated code are presented. Furthermore, the simulation results for the RS(255,239)+RS(255,239) code and the RS(255,239)+RS(255,223) code show that the two consecutive concatenated codes are a superior coding scheme with such advantages as the better error correction, moderate redundancy and easy realization compared to the classic RS(255,239) code and other codes, and their signal to noise ratio gains are respectively 2~3dB more than that of the RS(255,239)code at the bit error rate of 1×10 -13 . Finally, the frame structure of the novel consecutive concatenated code is arranged to lay a firm foundation in designing its hardware.  相似文献   

11.
Reed–Solomon (RS) codes have very broad applications in digital communication and storage systems. The recently developed algebraic soft-decision decoding (ASD) algorithms of RS codes can achieve substantial coding gain with polynomial complexity. Among the ASD algorithms with practical multiplicity assignment schemes, the bit-level generalized minimum distance (BGMD) decoding algorithm can achieve similar or higher coding gain with lower complexity. ASD algorithms consist of two major steps: the interpolation and the factorization. In this paper, novel architectures for both steps are proposed for the BGMD decoder. The interpolation architecture is based on the newly proposed Lee-O'Sullivan (LO) algorithm. By exploiting the characteristics of the LO algorithm and the multiplicity assignment scheme in the BGMD decoder, the proposed interpolation architecture for a (255, 239) RS code can achieve 25% higher efficiency in terms of speed/area ratio than prior efforts. Root computation over finite fields and polynomial updating are the two main steps of the factorization. A low-latency and prediction-free scheme is introduced in this paper for the root computation in the BGMD decoder. In addition, novel coefficient storage schemes and parallel processing architectures are developed to reduce the latency of the polynomial updating. The proposed factorization architecture is 126% more efficient than the previous direct root computation factorization architecture.   相似文献   

12.
13.
The deployment of channel coding and interleaving to enhance the bit-error performance of a satellite mobile radio channel is addressed for speech and data transmissions. Different convolutional codes (CC) using Viterbi decoding with soft decision are examined with inter-block interleaving. Reed-Solomon (RS) codes with Berlekamp-Massey hard decision decoding or soft decision trellis decoding combined with block interleaving are also investigated. A concatenated arrangement employing RS and CC coding as the outer and inner coders, respectively, is used for transmissions via minimum shift keying (MSK) over Gaussian and Rayleigh fading channels. For an interblock interleaving period of 2880 bits, a concatenated arrangement of an RS(48,36). over the Galois field GF(256) and punctured PCC(3,1,7) yielding an overall coding rate of 1/2, provides a coding gain of 42dB for a BER of 10?6, and an uncorrectable error detection probability of 1–10?9.  相似文献   

14.
The performance improvement of conventional TCM schemes over frequency nonselective slow Rayleigh fading channels, caused by a slight modification on the metric calculation of the Viterbi decoder, is investigated in this paper. A statistical analysis of the Euclidean distances at the input of the Viterbi decoder is carried out to explain this improvement. Furthermore, the performance improvement of two concatenated coding systems incorporating the above modification, under the same conditions, is studied. The performance of the TCM and the concatenated systems is evaluated by Monte Carlo simulation. The results show that the examined systems, using the proposed modification on the metric calculation, achieve BER performances comparable to other codes and systems, especially designed for fading channels.  相似文献   

15.
An implementation of a 16 state, rate 8/9 six-dimensional (6-D) 8PSK rotationally invariant trellis decoder for use in a concatenated codec is described. The concatenated codec allows transmission of STM-1 signals (at the 155.52 Mb/s information rate) over a 72 MHz satellite transponder. The inner trellis decoder is used with an outer (255,239) RS block decoder. The trellis decoder operates at 165.93 Mb/s and currently has an implementation loss of only 0.2 dB. The concatenated codec achieves a bit error ratio of 10?10 at an Eb/N0 of 8.2 dB (assuming an ideal modem and AWGN channel). Details are given of many Viterbi decoding ‘tricks’ that were used in order to implement the main functions of the decoder on two 10,000 gate equivalent CMOS programmable gate arrays.  相似文献   

16.
The coding scheme uses a set of n convolutional codes multiplexed into an inner code and a (n,n-1) single-parity-check code serving as the outer code. Each of the inner convolutional codes is decoded independently, with maximum-likelihood decoding being achieved using n parallel implementations of the Viterbi algorithm. The Viterbi decoding is followed by additional outer soft-decision single-parity-check decoding. Considering n=12 and the set of short constraint length K=3, rate 1/2 convolutional codes, it is shown that the performance of the concatenated scheme is comparable to the performance of the constraint length K=7, rate 1/2 convolutional code with standard soft-decision Viterbi decoding. Simulation results are presented for the K=3, rate 1/2 as well as for the punctured K=3, rate 2/3 and rate 3/4 inner convolutional codes. The performance of the proposed concatenated scheme using a set of K=7, rate 1/2 inner convolutional codes is given  相似文献   

17.
Use of the Viterbi decoder to decode the (63, 57) Hamming code is considered, Implementation and performance of systematic and nonsystematic codes are addressed. It is shown that a Viterbi decoder for the constraint length seven, rate-½ convolutional code can be used to decode both systematic and nonsystematic (63, 57) Hamming codes, but an additional step is needed to complete the decoding of the systematic code. Bounds and simulation results for postdecoding bit-error probability are given and it is shown that the systematic code performs 0.4 dB better than the nonsystematic code. A heuristic explanation is provided  相似文献   

18.
We consider the structure and performance of a multistage decoding scheme for an internally bandwidth efficient convolutionally coded Poisson fiber-optic code division multiple access (CDMA) communication system. The decoder is implemented electronically in several stages in which in each stage, the interfering users' coded bit decisions obtained in the previous stage is applied for computing the likelihood of the coded symbols of the desired user. The first stage is a soft-input Viterbi decoder for the internally coded scheme, in which the soft-input coded symbol likelihood values are computed by considering the multiuser interference as a noise signal. The likelihood of coded symbol computed in each stage is then entered into the convolutional decoder for the next bit decisions. The convolutional codes that are used for demonstrating the performance of the multistage decoder are super orthogonal codes (SOCs). We derive the bit error rates (BERs) of the proposed decoder for internally coded Poisson fiber-optic CDMA systems using optical orthogonal codes (OOCs) along with both ON-OFF keying (OOK) and binary pulse position modulation (BPPM) schemes. Our numerical results indicate that the proposed decoding scheme substantially outperforms the single-stage soft-input Viterbi decoder. We also derive the upper bound on the probability of error of a decoder for the known interference case, which is the ultimate performance of a multiuser decoder, and compare the result with that of the soft-input Viterbi decoder.  相似文献   

19.
Radio communications are often desirable for data and voice communications in an indoor environment. Wireless technology offers an improved mobility since the users are not confined to any particular location by wires. This paper investigates the use of Reed–Muller codes in an indoor wireless environment. Code combining is used to exploit the multiple signal copies resulting from the inherent frequency diversity of spread spectrum. The performance of Reed–Muller codes is compared with that of convolutional codes of similar rates and comparable decoding complexity. The complete weight distribution of various Reed–Muller codes is presented.  相似文献   

20.
该文提出用Reed Solomon(RS)乘积码作为外码,卷积码作为内码的级联码方案并且内外码间用Congruential向量生成的交织图案对RS码符号进行重排列。对此级联码采用的迭代译码基于成员码的软译码算法。当迭代次数达到最大后,通过计算RS码的校正子,提出一种纠正残余错误的方法,进一步提高了系统的误比特性能。仿真结果表明,在AWGN信道中与迭代译码的级联RS/卷积码相比,当误比特率为1e-5时,新系统的编码增益大约有0.4 dB。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号