首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nanoliter-chemistry station combined with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry was developed to characterize proteins at the attomole level. Chemical reactions including protein digestion were carried out in nanoliter or subnanoliter volumes, followed by microspot sample deposition of the digest to a MALDI-TOF mass spectrometer. Accurate mass determination of the peptides from the enzyme digest, in conjunction with protein database searching, allowed the identification of the proteins in the protein database. This method is particularly useful for handling small-volume samples such as in single-cell analysis. The high sensitivity and specificity of this method were demonstrated by peptide mapping and identifying hemoglobin variants of sickle cell disease from a single red blood cell. The approach of combining nanoliter chemistry with highly sensitive mass spectrometric analysis should find general use in characterizing proteins from biological systems where only a limited amount of material is available for interrogation.  相似文献   

2.
Multiple sequential fraction collection of peptides and glycopeptides by high-performance capillary electrophoresis (HPCE) under applied voltage has been demonstrated from complex tryptic peptide maps. The collection methodology was adapted from a high-resolution glycopeptide mapping procedure and, as such, requires active temperature control of the sample, electrophoresis vials, and collections vials because the electrophoresis buffer system is higher conductive. Resolution was compromised in the preparative HPCE separation due to heavy sample loading and to reduced voltage. The latter was a requirement for this buffer system in order to control Joule heating at the current levels employed; collections were routinely performed at approximately 1.5 W/m. The collection buffer was optimized by the addition of 12% methanol (v/v), thereby improving collection yields. Tryptic non-glycopeptides were group collected; secondary analysis of the HPCE collections agreed with analytical separations with respect to the number of peptides contained in a given fraction. Sequentially collected peptide fractions were analyzed by Edman sequencing and MALDI mass spectrometry to verify peptide identity and sequence. Consistent peptide sequence or mass measurements were obtained for repeat collections. The isolation of the single pure glycopeptide indicates that unique glycopeptide structures can be collected by HPCE and then analyzed by other methods.  相似文献   

3.
A method to directly identify proteins contained in mixtures by microcolumn reversed-phase liquid chromatography electrospray ionization tandem mass spectrometry (LC/MS/MS) is studied. In this method, the mixture of proteins is digested with a proteolytic enzyme to produce a large collection of peptides. The complex peptide mixture is then separated on-line with a tandem mass spectrometer, acquiring large numbers of tandem mass spectra. The tandem mass spectra are then used to search a protein database to identify the proteins present. Results from standard protein mixtures show that proteins present in simple mixtures can be readily identified with a 30-fold difference in molar quantity, that the identifications are reproducible, and that proteins within the mixture can be identified at low femtomole levels. Based on these studies, methodology has been developed for direct LC/MS/MS analysis of proteins enriched by immunoaffinity precipitation, specific interaction with a protein-protein fusion product, and specific interaction with a macromolecular complex. The approach described in this article provides a rapid method for the direct identification of proteins in mixtures.  相似文献   

4.
Reversed-phase liquid chromatography (LC) using a nonporous silica support has been combined with electrospray (ES) time-of-flight (TOF) mass spectrometry (MS) for the fast separation and mass detection of peptides. Using this LC method, the resolution of a peptide mixture can be completed is less than 35 s. The resulting chromatographic peak widths are less than 1 s wide. Because of the unique nature of a TOF mass analyzer, complete mass spectra can be acquired at a rate which is sufficient to sample these narrow peaks. When compared with conventional LC, the same separation takes nearly 20 min to complete, and the signal-to-noise ratio observed in the total ion chromatogram is dramatically lower due to the influence of increased background noise in the mass spectra. The limit of detection for a low molecular weight peptide, Val-Pro-Leu, was found to be 6 pmol with the total ion chromatogram and 500 fmol with the reconstructed ion chromatogram. A peptide map of horse heart myoglobin, completed in 3.5 min, is shown as an example of the results which can be obtained from combining this fast LC method with fast ES/TOF/MS detection capability.  相似文献   

5.
Microfabrication technology offers the opportunity to construct microfluidic modules which are designed to perform specific, dedicated functions. Here we report the construction of a microfabricated device for the generation and delivery by electroosmotic pumping of solvent gradients at nanoliter per minute flow rates. The device consists of three solvent reservoirs and channels which were etched in glass. Solvent gradients and solvent flows were generated by computer controlled differential electroosmotic pumping of aqueous and organic phase, respectively, from the solvent reservoirs. The device was integrated into an analytical system consisting of the solvent gradient delivery module, a reverse phase microcolumn and an electrospray ionization ion trap mass spectrometer (MS). The system was used for the analysis at high sensitivity of peptides and peptide mixtures generated by proteolytic digestion of proteins. We have measured an absolute limit of detection as low as 1 fmol and a concentration limit of detection at the 100 amol/microL level. The system was also successfully used for the identification of proteins separated by 1D and 2D gel electrophoresis. This was achieved by gradient frontal analysis of the peptide mixture generated by proteolysis of the respective proteins, and the automated generation and interpretation of collision-induced dissociation spectra.  相似文献   

6.
An on-line microcolumn switching method was developed for the removal of sodium dodecyl sulphate (SDS) from tryptic digest samples. The system includes two micro-precolumns: a specific ionic detergent trapping column and a preconcentration column. Characterization of the proteinaceous samples, after isolation from the SDS, was performed by capillary liquid chromatography (LC) with UV absorption detection and electrospay mass spectrometry (ESI-MS). Loading and clean-up of the samples and regeneration of the detergent trapping column were performed at 50 microl min(-1), resulting in sample clean-up times of only 30 s. SDS-containing tryptic digested protein samples were directly applied to the micro-precolumns without any previous sample pretreatment. The developed microcolumn switching method permits the on-line analysis of small tryptic digest samples by capillary LC/ESI-MS in the presence of SDS. The method is completely automated and can be performed unattended. The maximum amount of SDS, in terms of loadability and breakthrough, were determined. Also studied were the selection of the loading and clean-up solvents and the recovery of the peptides. Chromatographic separations and mass spectral data confirmed the removal of SDS.  相似文献   

7.
Capillary electrophoresis/electrospray ionization (CE/ESI) high mass accuracy time-of-flight mass spectrometry was used for the first time to characterize small proteins using peptide mapping. To identify small proteins, the intact proteins were first analyzed to obtain their average molecular weights with errors less than 1 Da. On-line capillary electrophoresis mass spectrometry of the tryptic digests of these small proteins was then performed to obtain the accurate molecular weights of the peptides with accuracies of approximately 10 ppm. Next, this information was used for the identification of the proteins using a protein database. It was found that high mass accuracy is an effective tool in reducing the list of most-likely proteins generated by the database. In addition, on-line collision-induced dissociation of the completely or partially resolved capillary electrophoresis peaks of the protein digests was used to unambiguously identify the sequences of these peptides. Each CE/ESI-MS analysis used only 5 nL of sample containing approximately 120 fmol of each peptide in protein digests. The results indicate that the combination of capillary electrophoresis and high resolution, high mass accuracy time-of-flight mass spectrometry is a viable option for the identification of small proteins using peptide mapping.  相似文献   

8.
Capillary electrophoresis (CE) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) were combined in an off-line arrangement to provide separation and mass analysis of peptide and protein mixtures in the attomole range. A membrane target, precoated with MALDI matrix, was used for the continuous deposition of effluent exiting from a CE device. A sample track was produced by linear movement of the target during the electrophoretic separation and this track was subsequently analyzed by MALDI/MS. The technique is effective for peptides and proteins, having limits of detection (signal-to-noise >3) of about 50 amol for neurotensin (1673 Da) and 250 amol for cytochrome c (12361 Da) and apomyoglobin (16951 Da). The electrophoretic separation achieved from the membrane target, as measured by theoretical plate numbers from the mass spectrometric data, can be as high as 80-90% of that achieved by on-line UV detection under optimal conditions, although band broadening occurs and with some loss of separation efficiency. Non-volatile buffers such as 10-50 mM phosphate can also be used in the electrophoresis process and directly deposited on the membrane. The use of post-source decay techniques is shown for peptides in the CE sample track in order to obtain sequence verification. The effectiveness of this method of integration of CE and MALDI/MS is demonstrated with both peptide and protein mixtures and with the analysis of a tryptic digest of a protein.  相似文献   

9.
In the search for novel nuclear binding proteins, two bands from a sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel were analyzed and each was found to contain a number of proteins that subsequently were identified by tandem mass spectrometry (MS/MS) on a quadrupole ion trap instrument. The bands were digested with trypsin in situ on a polyvinylidene difluoride (PVDF) membrane following electroblot transfer. Analysis of a 2.5% aliquot of each peptide mixture by matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS) followed by an initial database search with the peptide masses failed to identify the proteins. The peptides were separated by reversed-phase capillary high performance liquid chromatography (HPLC) in anticipation of subsequent Edman degradation, but mass analysis of the chromatographic fractions by MALDI-MS revealed multiple, coeluting peptides that precluded this approach. Selected fractions were analyzed by capillary HPLC-electrospray ionization-ion trap mass spectrometry. Tandem mass spectrometry provided significant fragmentation from which full or partial sequence was deduced for a number of peptides. Two stages of fragmentation (MS3) were used in one case to determine additional sequence. Database searches, each using a single peptide mass plus partial sequence, identified four proteins from a single electrophoretic band at 45 kDa, and four proteins from a second band at 60 kDa. Many of these proteins were derived from human keratin. The protein identifications were corroborated by the presence of multiple matching peptide masses in the MALDI-MS spectra. In addition, a novel sequence, not found in protein or DNA databases, was determined by interpretation of the MS/MS data. These results demonstrate the power of the quadrupole ion trap for the identification of multiple proteins in a mixture, and for de novo determination of peptide sequence. Reanalysis of the fragmentation data with a modified database searching algorithm showed that the same sets of proteins were identified from a limited number of fragment ion masses, in the absence of mass spectral interpretation or amino acid sequence. The implications for protein identification solely from fragment ion masses are discussed, including advantages for low signal levels, for a reduction of the necessary interpretation expertise, and for increased speed.  相似文献   

10.
High-resolution two-dimensional (2-D) polyacrylamide gel electrophoresis allows the separation of complex biological mixtures (i.e., several hundred proteins from a bacterial cell lysate) in a single experiment. In this report proteins from Haemophilus influenzae were separated by 2-D gels and analyzed by peptide mass fingerprinting and/or amino acid analysis. By comparing the peptide mass profiles and the amino acid composition with the Haemophilus influenzae database, 119 protein spots were identified. The combination of amino acid analysis and peptide mass fingerprinting is a powerful tool for a rapid and economical identification of a large number of proteins resolved by 2-D gels. Studies on gene regulation and changes of protein expression upon drug treatment require quick and serial analysis techniques to efficiently identify potential new drug targets.  相似文献   

11.
An on-line nonaqueous capillary electrophoresis-electrospray mass spectrometry (ESI-MS) technique was developed using a commercial ion spray interface. The nonaqueous capillary electrophoresis ESI-MS system was used to profile tricyclic antidepressants of similar structures and mass-to-charge ratios. We found that pure methanol can be used as a sheath liquid to obtain stable ion spray from nonaqueous capillary electrophoresis. The flow rate of the coaxial nebulizing gas affected baseline signals, separation efficiency, and migration times. Other nonaqueous capillary electrophoresis operating conditions and electrospray parameters were optimized for enhanced baseline separation and high sensitivity detection. The effect of sample stacking on separation and detection was evaluated. The calculated detection limits were approximately 3 pg injected onto the capillary. ESI mass spectra of tricyclic antidepressants from a single quadrupole MS were obtained and elucidated. The information was used to propose fragmentation pathways of the tricyclic antidepressants. The method was also used to analyze the metabolites of amitriptyline produced by the fungus Cunninghamella elegans. Sixteen metabolites were detected and most of them were tentatively identified as demethylated and/or hydroxylated, and/or N-oxidized products.  相似文献   

12.
We describe an analytical system for the rapid identification of proteins by correlation of tandem mass spectra with protein sequence databases. The system consists of an integrated solid phase microextraction/capillary zone electrophoresis peptide separation device that is connected through a microelectrospray ion source to a tandem mass spectrometer. The limits of detection are 660 amol of sample at a concentration limit of < 33 amol/microliters for peptide mass measurement, and < 10 fmol of sample, at a concentration limit of < 300 amol/microliters for peptide analysis by collision-induced dissociation. Using this system, we have identified low nanogram amounts of yeast proteins separated by high-resolution two-dimensional gel electrophoresis.  相似文献   

13.
A methodology is described for creating a monolithic chromatography support within a pulled fused-silica electrospray needle. The monolith was formed from a mixture of styrene, divinylbenzene, 1-dodecanol, and toluene using 2,2'-azobis(isobutyronitrile) as the catalyst. The mixture was loaded into 150-micron-i.d. fused-silica capillary tubing with a pulled 5-10-micron needle tip at one end. Polymerization at 65 degrees C followed by removal of the porogen material yielded a stable, porous, monolithic support which had excellent properties for the separation and on-line, electrospray, mass spectrometry analysis of peptides and proteins. The performance of the monolith-filled electrospray needles was compared with similar needles filled with commercial C18 silica and polymeric particulate supports. Separation efficiencies for both protein and peptide mixtures were generally equal to or better than the particulate supports at comparable pressures and flow rates. The ion chromatograms derived from the on-line MS analysis were remarkably free from chemical background signals that often complicate the LC/MS analysis of femtomole amounts of sample. Good sequence coverage was obtained by LC/MS/MS analysis of the peptide mixture obtained from a protein isolated by silver-stained gel electrophoresis. The capability of the monolith to do peak parking experiments was demonstrated by the characterization of an immunoreactive HPLC fraction. The simple fabrication method, chromatographic performance, and robust nature of these microscale integrated column electrospray sources make them ideally suited for high-sensitivity tandem LC/MS analyses.  相似文献   

14.
A rapid and systematic strategy for the identification of drug metabolites in biological matrices based on liquid chromatography-tandem mass spectrometry (LC/MS/MS) techniques was utilized for the identification of drug metabolites of the HIV protease inhibitor Indinavir. This strategy integrates intelligent realtime mass spectrometry with HPLC detection and a predictive strategy for detecting metabolites arising from common biotransformations, to rapidly elucidate structures of drug metabolites. Structures of metabolites generated from in vitro incubation mixtures of Indinavir were characterized from a single chromatographic analysis using the automated LC/MS/MS methodology, thus reducing data acquisition time and improving efficiency.  相似文献   

15.
As part of an integrated quality concept for impurities during drug development, the multidimensional evaluation of impurity profiles by LC MS coupling is presented using peptide drugs as an example. This quality concept can be regarded as an adaptation of the ICH-requirements to the special situation during the drug development process. The primary goal is to obtain qualitative molecular weight information for impurity peaks detected at the same UV wavelength as for the impurity test procedure. The approach is focused on the investigation, if the impurities in a clinical batch were also present in the toxicologically qualified batch(es). Depending on the relevance of individual impurities in further batches or as degradation products, the molecular weight can be used as a starting point for further characterization and identification. Often, eluents with volatile buffers required for MS result in different selectivities and/or inferior chromatographic separation and sensitivity compared with nonvolatile buffers (e.g. phosphates). In these cases, peak 'tracking' especially for small peaks can become critical. A procedure is presented for on-line coupling of LC methods with non-volatile eluents to mass spectrometry.  相似文献   

16.
An automated fraction collection interface is used in conjunction with matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry to analyze material isolated by capillary electrophoresis (CE). CE fractions are deposited directly on the MALDI probes so that individual peaks from the electropherogram are associated with a single sample spot on the probe. MALDI matrices with high acid concentrations afford enhanced tolerance of electrophoresis buffers. The utility of this hybrid instrument is demonstrated by separation and mass analysis of a tryptic digest of cytochrome c and synthetic mixtures of four proteins. Mass assignments corresponding to the protonated molecular ions are in good agreement with those predicted from molecular structure. Miniaturization of the interface affords enhanced sensitivity, with good-quality spectra from separations of as little as 25 fmol of protein.  相似文献   

17.
Exoglycosidase digestion combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been demonstrated to be an effective method for the structural characterization of glycoconjugates and oligosaccharides in picomolar amounts. A sample preparation method is described, in which 6-aza-2-thiothymine (ATT) in water is used as matrix and enzymes are dialyzed before use against a low concentration of volatile buffer such as ammonium acetate. Under these conditions, a series of sequential on-target exoglycosidase treatments was carried out in one single analyte spot in the presence of ATT matrix. Subsequent mass spectrometric analysis of the resulting products yielded information on both the completeness of the reaction and structural features of the glycoconjugates such as monosaccharide sequence, branching pattern, and anomeric configurations of the corresponding glycosidic linkages. The results show that all exoglycosidases used retain their activity in the presence of ATT matrix. Hence, structural analysis of carbohydrates or mixtures thereof can be performed very fast, without intermediate desalting steps or sample splitting. This approach is illustrated by the analysis of underivatized glycans, oligosaccharide derivatives, glycopeptides, and glycolipids. Depending on the analyte, amounts of sample required could be limited to a few picomoles.  相似文献   

18.
Penicillin-binding protein 2a (PBP2a), a high molecular mass PBP, is the primary enzyme responsible for the beta-lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA). Inhibition of a PBP such as PBP2a by beta-lactams is due to covalent modification of an active site serine residue. Based on the sequence alignment with well studied beta-lactamases, DD-carboxypeptidases and other high molecular mass PBPs, the serine of a tetrad S403XXK in PBP2a was tentatively identified as the penicillin-binding site. However, direct evidence for the involvement of serine403 has not been reported. In this study, a method which combines liquid chromatography/electrospray mass spectrometry (LC/MS) and nano-electrospray MS for the identification of the active site serine in PBP2a is described. The covalent binding of the beta-lactams was carried out in vitro with the recombinant PBP2a. Peptide mapping of the cyanogen bromide fragments from penicilloyl-PBP2a, using microbore LC/MS, provided a rapid identification of the modified peptide with a 334 Da mass increase. The acylated peptide was isolated and further digested with trypsin. Nano-electrospray MS/MS sequencing of the acylated peptide in the tryptic digest showed that the penicillin was indeed attached to serine403.  相似文献   

19.
Complete and rapid peptide and glycopeptide mapping of a mouse monoclonal immunoglobulin (IgG2b) were carried out by liquid chromatography/electrospray ionization ion trap-mass spectrometry/mass spectrometry (LC/ ESI IT-MS/MS). It was possible to obtain spectra of a minor glycopeptide at a quantity as low as 1.8 pmol. Reduced and carboxymethylated mouse antidansyl monoclonal IgG2b (RCM-IgG2b) was digested with lysyl-endopeptidase. Proteolytic peptides were subjected to capillary HPLC separation followed by analysis with an ion trap mass spectrometer. The complete amino acid sequence of the IgG2b was characterized by using LC/ ESI IT-MS/MS. The structures of 12 different types of O-linked oligosaccharides attached to Thr-221AH in the hinge region and those of three major types of N-linked oligosaccharides attached to Asn-297H have been characterized.  相似文献   

20.
The identification of naturally processed tumor peptides that can stimulate a tumor-specific, CTL response is crucial to the development of a vaccine-based, immunotherapeutic approach to cancer treatment. One type of cancer in which a tumor-specific, CTL response has been observed is squamous cell carcinoma of the lung. In the system investigated here, the tumor-specific CTLs are HLA-A68.2 restricted. Immunoaffinity chromatography was used to isolate the HLA-A68.2 molecules from the tumor cell line, and peptide was eluted with acid from the HLA-A68.2 molecules and subjected to three rounds of separation by reversed phase-high performance liquid chromatography (RP-HPLC). To determine which fractions contained the peptide recognized by the tumor-specific CTLs, an aliquot of each RP-HPLC fraction was added to the autologous, B-lymphoblastoid cell line, and the cells were then tested as targets for tumor-specific CTLs. After the third round of RP-HPLC, mass spectrometry was used to sequence individual peptide candidates, and a peptide with a m/z of 497 was identified as the active peptide. Collision-activated dissociation of m/z 497 allowed identification of the peptide sequence as ETVSEQSNV. With the exception of a single amino acid difference (glutamic acid versus glutamine as the sixth position in the peptide), this peptide is identical to residues 581 to 589 of elongation factor 2. The PCR was used to amplify the elongation factor 2 gene in both the tumor cells and the autologous B cell line, and DNA sequencing of the products revealed the presence of a heterozygous mutation in the tumor cells that accounts for the difference between the two peptide sequences. Although a similar analysis did not reveal the presence of the mutation in three additional lung cell carcinomas, this does not rule out the possibility that a survey of a larger population of tumor cells would reveal the presence of the mutation at a low frequency. These results demonstrate the utility of this approach for identifying tumor-specific antigens that are the targets of a CTL response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号