首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Two linear organic A–D–A molecules (DTPT and DTPTT) comprised of electron-donating (D) coplanar heteroacenes as core end-capping with electron-accepting (A) dicyanovinylene were investigated as electron donor materials in organic photovoltaic (OPV) applications. The photophysical and electrochemical properties of these two dyes were examined. The A–D–A configuration renders these two molecules to have intense and red-shifted absorption characteristics for better light-harvesting (higher photocurrent density), while retaining relatively low HOMO energy levels for keeping sufficiently high open circuit voltage (Voc) in OPV. The optical constants and molecular orientation of thin films were acquired with variable-angle spectroscopic ellipsometry (VASE). Due to the anisotropic behavior observed in thin film, these two organic donors were firstly adopted to combine with electron acceptor C60 in a vacuum-processed planar heterojunction (PHJ) solar cells. The optimized DTPT-based PHJ device yielded a PCE of 3.01%, whereas the PHJ device based on DTPTT, delivered an inferior PCE of 1.70%. The exciton diffusion length extracted from spectrum-response modeling of PHJ devices is ∼5 nm and ∼4 nm for DTPT and DTPTT, respectively. Replacement of C60 with C70 for a better spectral response in 400–500 nm, planar-mixed heterojunction (PMHJ) SMOSCs without a thin donor layer in between the active layer and MoO3 was found to produce optimum device results. The optimized DTPTT-based device showed a PCE of 3.02%, while the shorter counterpart DTPT delivered a PCE up to 5.64%.  相似文献   

2.
Four different diketopyrrolopyrrole (DPP)-based small molecules (SMs) with A–D–A type structure were synthesized, where electron-donating unit (D) was systematically varied with different electron-donating power (thiophene vs. phenylene; thienothiophene vs. naphthalene) and different molecular planarity (bithiophene vs. thienothiophene; and biphenylene vs. naphthalene). The small molecules with weak donating unit (phenylene or naphthalene) have deeper HOMO energy levels than those with strong donating unit (thiophene or thienothiophene), and thus exhibit higher VOC. When the fused aromatic ring (thienothiophene or naphthalene) with planar molecular structure is introduced in SMs, the SMs exhibit high hole mobility and thus afford high JSC. As a result, the introduction of naphthalene (weak donating power and planar structure) enhances both VOC and JSC, resulting in a promising power conversion efficiency of 4.4%. This result provides a valuable guideline for rational design of conjugated small molecules for high performance organic solar cells.  相似文献   

3.
Donor–acceptor (D–A) type conjugated polymers have been developed to absorb longer wavelength light in polymer solar cells (PSCs) and to achieve a high charge carrier mobility in organic field-effect transistors (OFETs). PDTDP, containing dithienothiophene (DTT) as the electron donor and diketopyrrolopyrrole (DPP) as the electron acceptor, was synthesized by stille polycondensation in order to achieve the advantages of D–A type conjugated polymers. The polymer showed optical band gaps of 1.44 and 1.42 eV in solution and in film, respectively, and a HOMO level of 5.09 eV. PDTDP and PC71BM blends with 1,8-diiodooctane (DIO) exhibited improved performance in PSCs with a power conversion efficiency (PCE) of 4.45% under AM 1.5G irradiation. By investigating transmission electron microscopy (TEM), atomic force microscopy (AFM), and the light intensity dependence of JSC and VOC, we conclude that DIO acts as a processing additive that helps to form a nanoscale phase separation between donor and acceptor, resulting in an enhancement of μh and μe, which affects the JSC, EQE, and PCE of PSCs. The charge carrier mobilities of PDTDP in OFETs were also investigated at various annealing temperatures and the polymer exhibited the highest hole and electron mobilities of 2.53 cm2 V−1 s−1 at 250 °C and 0.36 cm2 V−1 s−1 at 310 °C, respectively. XRD and AFM results demonstrated that the thermal annealing temperature had a critical effect on the changes in the crystallinity and morphology of the polymer. The low-voltage device was fabricated using high-k dielectric, P(VDF-TrFE) and P(VDF-TrFE-CTFE), and the carrier mobility of PDTDP was reached 0.1 cm2 V−1 s−1 at Vd = −5 V. PDTDP complementary inverters were fabricated, and the high ambipolar characteristics of the polymer resulted in an output voltage gain of more than 25.  相似文献   

4.
Efficient and stable polymer bulk-heterojunction solar cells based on regioregular poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC61BM) blend active layer have been fabricated with a MoO3–Au co-evaporation composite film as the anode interfacial layer (AIL). The optical and electrical properties of the composite MoO3–Au film can be tuned by altering the concentration of Au. A composite film with 30% (weight ratio) Au was used as the AIL and showed a better performance than both pure MoO3 and PEDOT:PSS as AIL. The surface morphology of the MoO3–Au composite film was investigated by atomic force microscopy (AFM) and showed that the originally rough ITO substrate became smooth after depositing the composite film, with the root mean square roughness (RMS) decreased from 4.08 nm to 1.81 nm. The smooth surface reduced the bias-dependent carrier recombination, resulting in a large shunt resistance and thus improving the fill factor and efficiency of the devices. Additionally, the air stability of devices with different AILs (MoO3–Au composite, MoO3 and PEDOT:PSS) were studied and it was found that the MoO3–Au composite layer remarkably improved the stability of the solar cells with shelf life-time enhanced by more than 3 and 40 times compared with pure MoO3 layer and PEDOT:PSS layer, respectively. We argue that the stability improvement might be related with the defect states in MoO3 component.  相似文献   

5.
Blade coating was successfully applied to realise high-efficiency small-molecule organic solar cells (OSCs) with a solution-processed active layer comprising a small organic molecule DR3TBDTT with a benzo[1,2–b:4,5–b′]dithiophene (BDT) unit as the central building block as the donor and [6,6]–phenyl–C71–butyric acid methyl ester (PC71BM) as the acceptor. Using chloroform as the solvent, a DR3TBDTT/PC71BM blend active layer without an additive was effectively formed through blade coating. The power conversion efficiency (PCE) of small organic molecule solar cells was enhanced by 3.7 times through thermal annealing at 100 °C. This method produces OSCs with a high PCE of up to 6.69%, with an open circuit voltage (Voc) of 0.97 V, a short-circuit current density (Jsc) of 12.60 mA/cm2, and a fill factor (FF) of 0.55.  相似文献   

6.
Two donor–acceptor type fluoro-isoindigo based small molecule semiconductors are synthesized and their optical, electrochemical, thermal, and charge transport properties are investigated. The two molecular chromophores differ by their architecture, linear (M1) vs propeller-like (M2). Both molecules present a broad absorption in the visible range and a low optical HOMO–LUMO gap (∼1.6 eV). AFM images of solution-processed thin films show that the trigonal molecule M2 forms highly oriented fibrils after a few seconds of solvent vapor annealing. The materials are evaluated as electron donor components in bulk heterojunction organic solar cells using PC61BM as the electron acceptor. The devices based on the propeller-like molecule M2 exhibit a high open-circuit voltage (around 1.0 V) and a power conversion efficiency of 2.23%.  相似文献   

7.
《Organic Electronics》2014,15(2):405-413
A novel deep HOMO A1-π-A2-D-A2-π-A1 type molecule (D(CATBTzT)BDT), which terminal electron-withdrawing octyl cyanoacetate group is connected to a benzo[1,2-b:4,5-b′]dithiophene (BDT) core through another electron-accepting benzotriazole block, has been synthesized, characterized, and employed as electron donor material for small molecule organic solar cells (SM-OSCs). By simple solution spin-coating fabrication process, D(CATBTzT)BDT/PC61BM based OSCs exhibit a power conversion efficiency (PCE) of 3.61% with a high open-circuit voltage of 0.93 V. The D(CATBTzT)BDT based solar cells device also can show high FF of 72% with PCEs of 2.31% which is one of the best FF results for solution-processed SM-OSCs.  相似文献   

8.
《Organic Electronics》2014,15(6):1173-1183
Two novel D–A–Ar-type small molecules of TPA–DPP–P and TPA(DPP–P)2 were synthesized and characterized, in which triphenylamine (TPA), diketopyrrolopyrrole (DPP) and phenanthrene (P) were used as the donor (D) core, acceptor (A) arm, and enlarged π-system of polycyclic arene (Ar) terminal. Their absorptive, electro-chemical, thermal, and photovoltaic properties were preliminary investigated. Significantly improved photophysical and photovoltaic performances were observed for both small molecules containing the planar P terminal in comparison with those for their parent D–A-type molecule of TPA–DPP. The highest power conversion efficiency (PCE) of 3.42% and a maximum short-circuit current density (Jsc) of 9.2 mA/cm2 were obtained in the solution-processed TPA(DPP–P)2-based solar cells using [6,6]-phenyl-C-71-butyric acid methyl ester (PC71BM) as acceptor. The PCE and Jsc values are 8.76 and 4.97 times higher than those of the TPA–DPP-based cells, respectively. It indicates that appending the enlarged π-system of the planar P terminal and incorporating the DPP–P arm into D–A-type small molecule are efficient approaches to improve photophysical and photovoltaic performances for its resulting molecules.  相似文献   

9.
《Organic Electronics》2014,15(8):1780-1790
We report the photophysical, electrochemical and theoretical properties of two dyes with same acceptor, π-linker and anchoring acceptor unit and different TPA (D1) and pyran (D2) donor central unit. The change in the central unit resulted in corresponding different photophysical and electrochemical properties. The dye sensitized solar cell fabricated using dye D1 showed the higher incident photon to current efficiency of 54%, a short circuit current (Jsc) of 11.86 mA/cm2, an open circuit voltage of 0.64 V, and fill factor (FF) of 0.68, corresponding an overall power conversion efficiency of 5.16% which is higher than that for D2 based DSSCs (4.42%). The difference in the PCE of DSSCs based on D1 and D2 is partly, due to the smaller amount of dye loading, higher dark current and charge recombination rate of D1 based DSSC. The electrochemical spectra of DSSCs demonstrated longer electron life time and charge recombination resistance and small charge transport resistance for D1 sensitized DSSC, results the higher PCE.  相似文献   

10.
《Organic Electronics》2014,15(7):1536-1544
New D–A–π–A carbazole dyes containing benzothiadiazole chromophores were designed and synthesized for application in dye-sensitized solar cells (DSSCs). The light-harvesting capabilities and photovoltaic performance of these dyes were investigated systematically through comparison of different π-bridges and acceptors. Compared with thiophene bridge, benzene bridge provides improved IPCE and VOC, which leads to better photoelectricity conversion efficiency. Dyes with cyanoacetic acid acceptor display superior photovoltaic properties though with shorter absorption maximum and lower molar absorption coefficient compared with dyes with rhodanine acetic acid acceptor. Therefore, dye with benzene bridge and cyanoacetic acid acceptor shows the most efficient photoelectricity conversion efficiency and has the maximum η value of 5.40% (VOC = 710 mV, JSC = 10.99 mA/cm2, and ff = 0.71) under simulated AM 1.5 irradiation (100 mW/cm2).  相似文献   

11.
《Organic Electronics》2014,15(9):2116-2125
Two D–A–D small molecules TDPP (FP)2 and TDPP (BuP)2 coded as CSDPP2 and CSDPP4 respectively were synthesized having same diketopyrrolopyrrole (DPP) as core acceptor and difluoro-phenyl (FP) and dibutyloxy phenyl (BuP) as different end donor units with broad absorption and suitable energy levels. We have used these small molecules as donor components along with the PC70BM as electron acceptor for the preparation of bulk heterojunction (BHJ) active layer in small molecule (SM) organic photovoltaics (OPV) test cells. The optimal power conversion efficiencies obtained with CSDPP2 and CSDPP4 are 2.26% and 3.23% when the BHJ active layer was cast from CF solvent. The PCE has been further enhanced up to 3.03% and 4.65% for CSDPP2 and CSDPP4 when the BHJ active layer was cast from CN/CF solvent. The enhancement in PCE has been explained in terms of change in crystallinity and nanoscale morphology and more balanced charge transport resulting from increased hole mobility.  相似文献   

12.
In this work, we have designed and synthesized a new naphtho[1,2-b:5,6-b′]dithiophene-containing enlarged π-conjugated donor–acceptor (D–A) small molecule, NDT(TTz)2, for use in solution-processed organic photovoltaics. NDT(TTz)2, which contains a thiophene-bridged naphtho[1,2-b:5,6-b′]dithiophene as the central fused core and triphenylamine-flanked thiophene thiazolothiazole as a spacer, was synthesized via sequential Suzuki and Stille coupling reactions. The thermal, physiochemical, and electrochemical properties of NDT(TTz)2 have been evaluated by differential scanning calorimetry, thermogravimetry, UV–Vis spectroscopy, photoluminescence spectroscopy, X-ray diffraction, and cyclic voltammetry. As desired for photovoltaic applications, NDT(TTz)2 possesses good solubility, thermal stability, and a well-ordered, π–π stacked, crystallinity. The optical band gap and HOMO level of NDT(TTz)2 were determined to be 2.0 eV and −5.23 eV, respectively. In addition to organic thin film transistor studies, application of NDT(TTz)2 to preliminary photovoltaic devices has also been investigated by fabricating solution-processed bulk heterojunction solar cells together with PC71BM in a typical layered device structure, ITO/PEDOT:PSS/NDT(TTz)2:PC71BM/LiF/Al. Without extensive optimization of the device, NDT(TTz)2 in these devices shows a maximum power conversion efficiency of 1.44% under AM 1.5 illumination at a 100 mW/cm2 intensity.  相似文献   

13.
In this work we have synthesized and characterized four indoline-based small organic molecules for their use as electron donor moiety in bulk-heterojunction solution processed organic solar cells combined with PC70BM as electron acceptor. Our results show a wide range of light to energy efficiencies from 0.8% to 3.5% under standard measurement conditions. An initial analysis suggests that the main limitation is the device photocurrent due to the device film thickness. Yet, charge transfer dynamics were studied to correlate charge loss mechanisms to π-bridge structural variations and, moreover, mobility measurements were also carried out to fully explain these device limitations.  相似文献   

14.
We report on the optical and electrochemical characterization (experimental and theoretical) of two donor substituted benzothiadiazole with different cyano based acceptor π-linkers, tetracyanobutadiene (TCBD) SM1 and dicyanoquinomethane (DCNQ) SM2, and explore them as the donor component for solution processed bulk heterojunction organic solar cells, along with PC71BM as the electron acceptor. The solution bulk heterojunction (BHJ) solar cells based on dichloromethane (DCM) processed active layer with SM1 and SM2 as donor and PC71BM as acceptor achieve power conversion efficiency (PCE) of 2.76% and 3.61%, respectively. The solar cells based on these two small molecules exhibit good Voc, which is attributed to their deep HOMO energy level. The higher PCE of the device based on SM2 compared to SM1 is attributed to the its small bandgap, broader absorption profile and enhanced hole mobility. Additionally, the PCE of the SM2:PC71BM based solar cells processed with 1-chloronaphthalene CN (3 v%)/DCM is further improved reaching upto 4.86%. This increase in PCE has been attributed to the improved nanoscale morphology and more balanced charge transport in the device, due to the solvent additive.  相似文献   

15.
Three synthesized and five new designed carbazole-based organic dye sensitizers before and after bonding to the TiO2 are theoretically investigated by density functional theory and time-dependent density functional theory methods. The influences of inserting different groups between donor and acceptor and augmenting π-spacers on the performance are explored by optimized geometries, electronic structures, simulated absorption spectra, and other parameters. The efficiency of all dyes as sensitizers in dye-sensitized solar cells is evaluated by the key parameters, including HOMO–LUMO energy gap, distance of charge transfer upon excitation from the ground to excited state, light-harvesting efficiency, injection driving force, and total reorganization energy related with the short-circuit current density and open-circuit photovoltage. It has been testified that both the nature and the number of π-linker units are important factors for the performance of dye-sensitized solar cells.  相似文献   

16.
17.
A serial of novel A-D-A type small molecules with BODIPY linked through alkynyl with various electron donor units such as fluorene, carbazole, benzodithiophene and phenothiazine, namely F-BDP, C-BDP, B-BDP and P-BDP, respectively, were designed and synthesized. Introducing the alkynyl bridge leads to extending the molecular absorption spectrum to the range of 320–700 nm with high molar extinction coefficients (105 cm−1 M−1) and strong fluorescence quenching. The molecules showed relatively low HOMO ranging from −5.02 to −5.24 eV as estimated from cyclic voltammetry measurements. Interestingly, B-BDP with BDT as donor exhibits more obviously red-shifted absorption in the solid state compared to F-BDP, C-BDP and P-BDP. Furthermore, the solution-processed bulk-heterojunction organic solar cell based on B-BDP/PC71BM present superior charge transport property and more favorable nanoscale morphology, resulting in a significant higher Jsc of 11.84 mA cm2 and FF than the other counterparts, thus achieved a higher PCE of 4.65%, which is one of the best values among the ever reported BODIPY based organic solar cells.  相似文献   

18.
We report a series-connected small molecule tandem photovoltaic cell utilizing two donors with complementary photovoltaic characteristics, lead phthalocyanine (PbPc) in the front subcell and boron subphthalocyanine chloride (SubPc) in the back subcell, to achieve both near infrared (NIR) response up to 1 μm and high open-circuit voltage (VOC) of more than 1.5 V in the same device. We find that the C60 layer thickness in the front subcell has a critical impact on the overall optical structure and photovoltaic performance of the tandem device. By combining transfer matrix calculations with subcell-selective spectral measurements, we are able to tune the optical field distribution inside the active layers and increase the photocurrent outputs from both subcells, leading to EQE > 30% over the wavelength range 400 nm < λ < 900 nm. This optimized tandem cell exhibits JSC = (5.5 ± 0.1) mA/cm2, fill factor = 0.54, VOC = 1.53 V, and a power conversion efficiency of (4.5 ± 0.2)%.  相似文献   

19.
Two new oligothiophene-based small molecules, namely DRCN6T-F and DRCN8T-F, with 3,3′-difluoro-2,2′-bithiophene as the central building block and 2-(1,1-dicyanomethylene)-rhodanine as end groups, were designed and synthesized. Compared to their non-fluorinated counterparts DRCN6T and DRCN8T, DRCN6T-F and DRCN8T-F exhibit enhanced intermolecular interactions and lower HOMO energy levels. However, PCEs of 2.26% and 5.07% were obtained for DRCN6T-F and DRCN8T-F based optimized devices, respectively, lower than those of non-fluorinated molecules DRCN6T and DRCN8T. The relatively poor performance for the DRCN6T-F and DRCN8T-F were mainly caused by their low short-circuit current densities, due to their unfavorable morphologies and low charge carrier mobilities.  相似文献   

20.
SGT dyes containing various amine-typed donors as triphenylamine, bis-fluorenylamine and bis-phenothiazinylamine as the electron donor and a cyanoacrylic acid moiety as electron acceptor in D–π–A system, were developed to use in dye-sensitized solar cells (DSSCs). The SGT-102 dye containing bis-fluorenylamine had a better prevented charge recombination than other SGT dyes; leading to improvement in Voc. As a result, the conversion efficiency of 7.22% was achieved with a Jsc of 12.1 mA cm−2, Voc of 865 mV and a FF of 69.1 for the DSSC employing a dye containing the bulky bis-fluorenylamine donor unit, while the DSSC based on a dye containing the bulky bis-phenothiazinylamine donor unit showed a lower Jsc and Voc, leading to a lower efficiency of 5.16%, due to slow charge recombination associated with differently geometric structure orientations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号