首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light emitting field effect transistors (LEFETs) are emerging as a multi-functional class of optoelectronic devices. LEFETs can simultaneously execute light emission and the standard logic functions of a transistor in a single architecture. However, current LEFET architectures deliver either high brightness or high efficiency but not both concurrently, thus limiting their use in technological applications. Here we show an LEFET device strategy that simultaneously improves brightness and efficiency. The key step change in LEFET performance arises from the bottom gate top-contact device architecture in which the source/drain electrodes are semitransparent and the active channel contains a bi-layer comprising of a high mobility charge-transporting polymer, and a yellow–green emissive polymer. A record external quantum efficiency (EQE) of 2.1% at 1000 cd/m2 is demonstrated for polymer based bilayer LEFETs.  相似文献   

2.
This work presents a low temperature with high resolution capability UV-patternable polymer, i.e. mr-UVCur06, for use as a gate insulator in OTFTs, by investigating the morphology transformation of pentacene deposited on the mr-UVCur06. The device structure is polyethylene terephthalate (PET)/indium-tin oxide (ITO)/mr-UVCur06/pentacene/Au (source/drain). In addition to its solution-processable capability, mr-UVCur06 is directly patterned by UV light in a low-temperature process. UV/ozone post-treatment of the patternable mr-UVCur06 can illuminate organic contaminants from its surface and increases surface energy. Experimental results indicate that a high surface energy existing at the mr-UVCur06 surface has produced in a larger ratio of Ithin film phase/Itriclinic bulk phase in pentacene. Then, the distance of pentacene molecular crystal structure, which is arranged in the thin film phase, is shorter than that in triclinic bulk phase. The performance of pentacene-based OTFTs can be enhanced with few contaminants and a high surface energy on the UV-patternable gate insulator. By performing UV/ozone post-treatment on the mr-UVCur06 insulator surface for 60 s, the OTFTs demonstrate a mobility, on/off drain current ratio, and VT of 0.34 cm2/V s, 5.5 × 104, and 2.5 V, respectively. Furthermore, the low-temperature photopatternable polymer dielectric paves the way for a relatively easy and low-cost fabrication of an OTFT array without expensive and complicated photolithography and dry etching.  相似文献   

3.
Silver nanowires (AgNWs)/poly-(3,4-ethylenedioxythiophene/polystyrene sulphonate) (PEDOT:PSS) composite films as conductive electrode for OTFTs were prepared, and their optical and electrical properties were investigated. The conductive composite films used in this study afforded low sheet resistance of <140 Ω/sq and transmittance as high as 70% in the visible region. For the composite film with 0.1 wt.% of AgNWs, contact resistance as low as 2.7 × 104 Ω cm was obtained, as examined by Transfer length model (TLM) analysis, and work function of the corresponding film was 5.0 eV. Furthermore, the composite films were employed as source and drain electrodes for top-gate/bottom-contact organic thin-film transistors (OTFTs) based on solution-processed 5,11-bistriethylsilylethynyl anthradithiophene (TES-ADT) as organic semiconductor, and the resulting device showed high electrical performance with carrier mobility as high as 0.21 cm2/V s.  相似文献   

4.
Inherent spontaneous polarization in ferroelectric-dielectric polymer PVDF-TrFE (Poly[(vinylidenefluoride-co-trifluoroethylene]) and an external electric field induced surface modification procedure are utilized to enhance organic field effect transistor (OFET) characteristics. The increase in the carrier mobility of the electric-field (EF) treated device correlates with the EF magnitude and evolution of dielectric microstructure and exhibits an enhancement beyond 300%. The enhanced interfacial transport property appears to have its origin in the dipolar orientation and nanostructure evolution at the interface.  相似文献   

5.
We report on organic field-effect transistors (OFETs) with sub-micrometer channels fabricated on plastic substrates with fully direct-written electrical contacts. In order to pattern source and drain electrodes with high resolution and reliability, we adopted a combination of two digital, direct writing techniques: ink-jet printing and femtosecond laser ablation. First silver lines are deposited by inkjet printing and sintered at low temperature and then sub-micrometer channels are produced by highly selective femtosecond laser ablation, strongly improving the lateral patterning resolution achievable with inkjet printing only. These direct-written electrodes are adopted in top gate OFETs, based on high-mobility holes and electrons transporting semiconductors, with field-effect mobilities up to 0.2 cm2/V s. Arrays of tens of devices have been fabricated with high process yield and good uniformity, demonstrating the robustness of the proposed direct-writing approach for the patterning of downscaled electrodes for high performance OFETs, compatibly with cost-effective manufacturing of large-area circuits.  相似文献   

6.
Low-voltage, n-type organic field effect transistors (OFETs) with simultaneously modified bottom-contact (BC) electrodes and dielectric were compared to their top-contact (TC) counterparts. The devices modified with 6-phenoxyhexylphosphonic acid (Ph6PA) self-assembled monolayer (SAM) showed similar performance, morphology, and contact resistance. Electron mobility of C60 devices were 0.212 and 0.320 cm2 V−1 s−1 and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) devices were 0.04 and 0.06 cm2 V−1 s−1 for TC and BC devices, respectively. Low contact resistance between 11 and 45 kΩ cm was found regardless of device architecture or n-type semiconductor used. This work shows it is possible to fabricate solution processable low-voltage bottom-contact devices with performance that is similar or better than their top-contact counterparts without the addition of complex and time-consuming processing steps.  相似文献   

7.
This study proposes an alternative planar bottom-contact (pBC) structure to enhance the electrical performance of pentacene-based organic thin-film transistors (OTFTs). This pBC structure uses a bilayer dielectric to control planarization with a precise etch depth and introduces a bilayer photoresist lift-off method to ensure that planarization produces an optimum flatness. Because of the improved growth continuity of pentacene near the edge of the source/drain electrodes, the contact resistance between the source/drain and the pentacene was reduced significantly, thereby enhancing the electrical performance of OTFTs. The mechanism for the enhanced performance was also verified by a physics-based numerical simulation.  相似文献   

8.
Carbon nanotube field effect transistors (CNTFETs) have been considered as one of the potential candidates for nanoelectronics beyond Si CMOS. However, it is not easy to have high performance CNTFETs with high yield currently. In this work, we proposed a local bottom-gate (LBG) CNTFETs combined with a novel device concept and optimized process technologies. High performance of CNTFET with low subthreshold swing of 139 mV/dec, high transconductance of 1.27 μS, and high Ion/Ioff ratio of 106 can be easily obtained with Ti source/drain contact after a post annealing process. Record high yield of 74% has been demonstrated. On the basis of the proposed process, lots of high performance CNTFETs can be obtained easily for advanced study on the electrical characteristics of CNTFETs in the future.  相似文献   

9.
In this work, we introduce a molecular-scale charge trap medium for an organic non-volatile memory transistor (ONVMTs). We use two different types of small molecules, 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) and 2,3,6,7,10,11-hexamethoxytriphenylene (HMTP), which have the same triphenylene cores with either hydroxyl or methoxy end groups. The thickness of the small molecule charge trap layer was sophisticatedly controlled using the thermal evaporation method. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) analysis revealed that there were negligible differences in the chemical structures of both small molecules before and after thermal deposition process. The ONVMTs with a 1-nm-thick HHTP charge trap layer showed a large hysteresis window, approximately 20 V, under a double sweep of the gate bias between 40 V and −40 V. The HMTP-based structure showed a negligible memory window, which implied that the hydroxyl groups affected hysteresis. The number of trapped charges on the HHTP charge trap layer was measured to be 4.21 × 1012 cm−2. By varying the thickness of the molecular-scale charge trap medium, it was determined that the most efficient charge trapping thickness of HHTP charge trap layer was approximately 5 nm.  相似文献   

10.
Physical blending is a facile and effective way to improve the performance of solution processed organic thin-film transistors (OTFTs). Blending small molecule semiconductors with soluble polymers has been extensively studied in recent years. However, blending between binary small molecule semiconductors is rare due to the difficulty to obtain ideal thin films. Herein, we systematically investigate the blending effects on the morphologies of thin films and their field-effect performance by using two small molecule semiconductors, 2-phenyl[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT) and 2-(4-dodecylphenyl) [1]benzothieno[3,2-b]benzothiophene, (C12-Ph-BTBT), which have the same aromatic skeleton. Molecular ordering and better crystallinity are observed in most of spin-coated blend thin films, thanks to the enhanced molecular interaction after blending. As a result, OTFTs based on blend thin films exhibit improved performance in most cases, with the highest average hole mobility about 1.5 cm2 V−1 s−1 demonstrated. Further device performance improvements are demonstrated by blending polystyrene with Ph-BTBT and C12-Ph-BTBT blends. The results here indicate that blending between small molecule semiconductors with compatible fused ring structures may be a promising strategy to enhance the performance of organic transistors.  相似文献   

11.
As an emerging material, graphene has attracted vast interest in solid-state physics, materials science, nanoelectronics and bioscience. Graphene has zero bandgap with its valence and conduction bands are cone-shaped and meet at the K points of the Brillouin zone. Due to its high intrinsic carrier mobility, large saturation velocity, and high on state current density, graphene is also considered as a promising candidate for high-frequency devices. To improve the reliability of graphene FETs, which include shifting the Dirac point voltage toward zero, increasing the channel mobility and decreasing the source/drain contact resistance, we optimized the device fabrication process. For CVD grown graphene, the film transfer and the device fabrication processes may produce interfacial states between graphene and the substrate and make graphene p or n-type, which shift the fermi level far away from the Dirac point. We have found that after graphene film transfer, an annealing process at 400 °C under N2 ambient will shift Dirac point toward zero gate voltage. Ti/Au, Ni, and Ti/Pd/Au source/drain structures have been studied to minimize the contact resistance. According to the measured data, Ti/Pd/Au structure gives the lowest contact resistance (~500 ohm μm). By controlling the process of graphene growth, transfer and device fabrication, we have achieved graphene FETs with a field effective mobility of 16,000 cm2/V s after subtraction of contact resistance. The contact resistivity was estimated in the range of 1.1 × 10?6 Ω cm2 to 8.8 × 10?6 Ω cm2, which is close to state of the art III–V technology. The maximum transconductance was found to be 280 mS/mm at VD = 0.5 V, which is the highest value among CVD graphene FETs published to date.  相似文献   

12.
《Organic Electronics》2014,15(7):1592-1597
A p-type small molecule bearing dicarboxylic acid functional group (–COOH) is synthesized and evaluated for field-effect transistor properties. We discover and report for the first time, that the –COOH groups assist in the passivation of surface traps on the dielectric layer and simultaneously facilitate the self-assembly of the molecules via inter-molecular hydrogen bonding resulting in crystalline active channels. A 9-fold decrease in the threshold voltage was observed for the transistors made using the –COOH functionalized molecule, QT-DA, compared to its ester analogue, QT-ES, providing an evidence of surface passivation. This resulted in an increase in the hole mobility of QT-DA by up to 2 orders of magnitude. It was shown that QT-DA adopts a vertical alignment with respect to the substrate due to preferential interaction between the –COOH groups and the SiO2 surfaces.  相似文献   

13.
A solution-processable A–D–A structure small molecule donor material called DRCN7T-Se with selenophene as the central block was synthesized. Conventional bulk-heterojunction solar cell devices based on DRCN7T-Se and PC71BM were optimized by thermal annealing and an excellent power conversion efficiency of 8.30% was achieved under AM 1.5G irradiation (100 mW cm−2).  相似文献   

14.
《Organic Electronics》2014,15(7):1503-1508
Analytical expressions for the gate-voltage dependence of the channel capacitance and the gate-to-contacts overlap capacitances in top-contact organic thin-film transistors (OTFTs) are derived and implemented in an organic compact capacitance model. The resulting modified model is verified by experimental data of transistors with constant mobility. The same model is analyzed by numerical simulations for OTFTs with a voltage-dependent mobility. The simulation results indicate that the quasistatic model describes well the simulated capacitances. In accumulation, the modeled values are slightly overestimated because of the generally accepted assumption of the charge-sheet model. It is also demonstrated that the quasistatic regime occurs at lower frequencies because of the reduced mobility at lower charge carrier concentrations.  相似文献   

15.
A new linear dithienosilole-based oligothiophene end-capped with methyl and electron-withdrawing dicyanovinyl groups, DTS(Oct)2-(2T-DCV-Me)2, was prepared in good yield. This oligomer exhibited broad absorption spectra in bulk down to the near-IR region with the optical edge at 900 nm, resulting in an initially high power conversion efficiency of 5.44% in solution-processed organic solar cells using PC71BM as an acceptor.  相似文献   

16.
In this study, we investigate the optimization of printed (3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) as source/drain electrodes for organic thin film transistors (OTFTs) through electrohydrodynamic (EHD) printing process. The EHD-printed PEDOT:PSS electrodes should fulfill the prerequisites of not only high conductivity but also optimum surface tension for successful jetting. The conductivity of PEDOT:PSS was dramatically enhanced from 0.07 to 352 S/cm by the addition of dimethylsulfoxide (DMSO). To use the DMSO-treated PEDOT:PSS solution in the EHD printing process, its surface tension was optimized by the addition of surfactant (Triton X-100), which was found to enable various jetting modes. In the stable cone-jet mode, the patterning of the modified PEDOT:PSS solution was realized on the surface-functionalized SiO2 substrates; the printed line widths were in the range 384 to 81 μm with a line resistance of 8.3 × 103 Ω/mm. In addition, pentacene-based OTFTs employing the EHD-printed PEDOT:PSS as source and drain electrodes were found to exhibit electrical performances superior to an equivalent vacuum-deposited Au-based device.  相似文献   

17.
《Organic Electronics》2014,15(1):156-161
A novel semiconductor material based on dialkylated thienoacene is designed and synthesized. The dihexyl-substituted dibenzotetrathienoacene derivative C6-DBTTA exhibits high stability which is evidenced by thermogravimetric analysis (TGA), UV–vis spectroscopy and electrochemistry. X-ray diffraction measurements of the vacuum-evaporated thin films show strong diffraction and indicate that the molecules are stacked nearly perpendicular to the substrate. AFM images reveal that the morphology of thin films depended on the deposition temperature. Thin film FETs devices based on C6-DBTTA were constructed and showed high mobility up to 0.48 cm2 V−1 s−1 and an on/off ratio over 107. These results suggest that this new dihexylated thienoacene is an important organic semiconductor for field effect transistors.  相似文献   

18.
Sub-micrometer channel length (0.5 μm) organic thin-film transistors (OTFTs) are demonstrated using a process flow combining nano-imprint lithography (NIL) and self-alignment (SA). A dedicated test structure was designed and samples were fabricated on 4-in. plastic foils using a p-type sublimated small molecule (pentacene) as semiconductor. Field-effect mobilities, in saturation, between 0.1 and 1 cm2/Vs were obtained not only for the supermicron OTFTs but also for the submicron OTFTs. Those devices were used to select a model based on the “TFT Generic Charge Drift model” which works well for a broad range of channel lengths including the submicron OTFTs. We show that these OTFTs can be accurately modeled, thus giving access to complex circuit simulations and design.  相似文献   

19.
There is a need to explore circuit designs in new emerging technologies for their rapid commercialization to extend Moore’s law beyond 22 nm technology node. Carbon nanotube based transistor (CNFET) has significant potential to replace CMOS in the future due to its better electrostatics and higher mobility. This paper presents a complete optimal design of an inverting amplifier in CMOS, CNFET and hybrid technologies. We investigate and conceptually explain the performance measure of the amplifier at 32 nm technology node in terms of operating voltage, number of carbon nanotubes (CNT), diameter and pitch (inter-nanotube distance) variations of carbon nanotubes in a CNFET transistor in pure and hybrid technologies for area, power and performance optimization. This paper also explores the scope, possibilities and challenges associated with pure CNFET and hybrid amplifiers. We have found that pure CNFET amplifier provided good amplification while hybrid pCNFET-nMOS amplifier offered excellent frequency response and pMOS-nCNFET amplifier gave better transient performance compared with planar CMOS.  相似文献   

20.
Top-contact organic field effect transistors(OFETs) based on poly(3-hexylthiophene)(P3HT) with different concentrations in chloroform(CHCl3) are fabricated.The output characteristics indicate that the P3HT concentration has significant influence on the OFET devices.The performance of the devices firstly is enhanced with increasing the P3HT concentration,and then decreases.The optimized devices with the P3HT concentration of 2 mg/mL show the best performance.The fieldeffect mobility is up to 1.4×10-2 cm2/Vs,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号