首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The lattice Boltzmann method (LBM) has been widely used for the simulations of the incompressible Navier–Stokes (NS) equations. The finite difference Boltzmann method (FDBM) in which the discrete-velocity Boltzmann equation is solved instead of the lattice Boltzmann equation has also been applied as an alternative method for simulating the incompressible flows. The particle velocities of the FDBM can be selected independently from the lattice configuration. In this paper, taking account of this advantage, we present the discrete velocity Boltzmann equation that has a minimum set of the particle velocities with the lattice Bharnagar–Gross–Krook (BGK) model for the three-dimensional incompressible NS equations. To recover incompressible NS equations, tensors of the particle velocities have to be isotropic up to the fifth rank. Thus, we propose to apply the icosahedral vectors that have 13 degrees of freedom to the particle velocity distributions. Validity of the proposed model (D3Q13BGK) is confirmed by numerical simulations of the shear-wave decay problem and the Taylor–Green vortex problem. With respect to numerical accuracy, computational efficiency and numerical stability, we compare the proposed model with the conventional lattice BGK models (D3Q15, D3Q19 and D3Q27) and the multiple-relaxation-time (MRT) model (D3Q13MRT) that has the same degrees of freedom as our proposal. The comparisons show that the compressibility error of the proposed model is approximately double that of the conventional lattice BGK models, but the computational efficiency of the proposed model is superior to that of the others. The linear stability of the proposed model is also superior to that of the lattice BGK models. However, in non-linear simulations, the proposed model tends to be less stable than the others.  相似文献   

2.
The immersed boundary (IB) method originated by Peskin has been popular in modeling and simulating problems involving the interaction of a flexible structure and a viscous incompressible fluid. The Navier–Stokes (N–S) equations in the IB method are usually solved using numerical methods such as FFT and projection methods. Here in our work, the N–S equations are solved by an alternative approach, the lattice Boltzmann method (LBM). Compared to many conventional N–S solvers, the LBM can be easier to implement and more convenient for modeling additional physics in a problem. This alternative approach adds extra versatility to the immersed boundary method. In this paper we discuss the use of a 3D lattice Boltzmann model (D3Q19) within the IB method. We use this hybrid approach to simulate a viscous flow past a flexible sheet tethered at its middle line in a 3D channel and determine a drag scaling law for the sheet. Our main conclusions are: (1) the hybrid method is convergent with first-order accuracy which is consistent with the immersed boundary method in general; (2) the drag of the flexible sheet appears to scale with the inflow speed which is in sharp contrast with the square law for a rigid body in a viscous flow.  相似文献   

3.
A topology optimization method for fluid flow using transient information is proposed. In many conventional methods, the design domain is updated using steady state information which is obtained after solving the flow field equations completely. Hence we must solve the flow field at each iterative which leads to high computational cost. In contrast, the proposed method updates the design domain using transient information of flow field. Hence the flow field is solved only once. The flow field is solved by lattice Boltzmann method (LBM). It is found that, by using LBM, the flow field is stably computed even though the design domain drastically changes during the computation. The design domain is updated according to sensitivity analysis. In many conventional methods, the sensitivity of objective functionals under lattice Boltzmann equations is obtained using additional adjoint equations. However, in the proposed method, the sensitivity is explicitly formulated and computed without using adjoint variables. In this paper, we show some numerical examples for low Reynolds number flows. The results demonstrate good convergence property in small computation time.  相似文献   

4.
A lattice Boltzmann (LB) framework to solve fluid flow control and optimisation problems numerically is presented. Problems are formulated on a mesoscopic basis. In a side condition, the dynamics of a Newtonian fluid is described by a family of simplified Boltzmann-like equations, namely BGK–Boltzmann equations, which are linked to an incompressible Navier–Stokes equation. It is proposed to solve the non-linear optimisation problem by a line search algorithm. The needed derivatives are obtained by deriving the adjoint equations, referred to as adjoint BGK–Boltzmann equations. The primal equations are discretised by standard lattice Boltzmann methods (LBM) while for the adjoint equations a novel discretisation strategy is introduced. The approach follows the main ideas behind LBM and is therefore referred to as adjoint lattice Boltzmann methods (ALBM). The corresponding algorithm retains most of the basic features of LB algorithms. In particular, it enables a highly-efficient parallel implementation and thus solving large-scale fluid flow control and optimisation problems. The overall solution strategy, the derivation of a prototype adjoint BGK–Boltzmann equation, the novel ALBM and its parallel realisation as well as its validation are discussed in detail in this article. Numerical and performance results are presented for a series of steady-state distributed control problems with up to approximately 1.6 million unknown control parameters obtained on a high performance computer with up to 256 processing units.  相似文献   

5.
In this paper, a lattice Boltzmann model for solving problems of elastic thin plate with small deflection is proposed. In order to recover the Sophie–Germain equation for elastic thin plate by lattice Boltzmann method, we transform the equation into a set of Poisson equations. Two sets of distribution functions are employed in the lattice Boltzmann equation to recover the Poisson equations. Based on this model, some problems on the rectangular elastic thin plate with small deflection are simulated. The comparisons between the numerical results and the analysis solutions are given in detail. The numerical examples show that the lattice Boltzmann model can be used to solve problems of the elastic thin plate with small deflection.  相似文献   

6.
In this paper, a lattice Boltzmann model based on the higher-order moment method for the reaction-diffusion equations is proposed. In order to obtain higher-order accuracy of truncation error and to overcome the drawbacks of ??error rebound?? in the previous models, a new assumption of additional distribution is presented. As results, the reaction-diffusion equations are recovered with the fourth-order accuracy of truncation error. Based on this model, the Fitzhugh-Nagumo equations are simulated. The comparisons between the LBM results and the Alternative Direction Implicit (ADI) results are given in detail. The numerical examples show that the higher-order moment method can be used to raise the accuracy of the truncation error of the lattice Boltzmann scheme for the reaction-diffusion equations.  相似文献   

7.
The Lattice-boltzmann method for simulating gaseous phenomena   总被引:5,自引:0,他引:5  
We present a physically-based, yet fast and simple method to simulate gaseous phenomena. In our approach, the incompressible Navier-Stokes (NS) equations governing fluid motion have been modeled in a novel way to achieve a realistic animation. We introduce the lattice Boltzmann model (LBM), which simulates the microscopic movement of fluid particles by linear and local rules on a grid of cells so that the macroscopic averaged properties obey the desired NS equations. The LBM is defined on a 2D or 3D discrete lattice, which is used to solve fluid animation based on different boundary conditions. The LBM simulation generates, in real-time, an accurate velocity field and can incorporate an optional temperature field to account for the buoyancy force of hot gas. Because of the linear and regular operations in each local cell of the LBM grid, we implement the computation in commodity texture hardware, further improving the simulation speed. Finally, textured splats are used to add small scale turbulent details, achieving high-quality real-time rendering. Our method can also simulate the physically correct action of stationary or mobile obstacles on gaseous phenomena in real-time, while still maintaining highly plausible visual details.  相似文献   

8.
The lattice Boltzmann method has attracted more and more attention as an alternative numerical scheme to traditional numerical methods for solving partial differential equations and modeling physical systems. The idea of the lattice Boltzmann method is to construct a simplified discrete microscopic dynamics to simulate the macroscopic model described by the partial differential equations. The use of the lattice Boltzmann method has allowed the study of a broad class of systems that would have been difficult by other means. The advantage of the lattice Boltzmann method is that it provides easily implemented fully parallel algorithms and the capability of handling complicated boundaries. In this paper, we present two lattice Boltzmann models for nonlinear anisotropic diffusion of images. We show that image feature selective diffusion (smoothing) can be achieved by making the relaxation parameter in the lattice Boltzmann equation be image feature and direction dependent. The models naturally lead to the numerical algorithms that are easy to implement. Experimental results on both synthetic and real images are described.  相似文献   

9.
A stochastic numerical scheme for an extended immersed boundary method which incorporates thermal fluctuations for the simulation of microscopic biological systems consisting of fluid and immersed elastica was introduced in reference [2]. The numerical scheme uses techniques from stochastic calculus to overcome stability and accuracy issues associated with standard finite difference methods. The numerical scheme handles a range of time steps in a unified manner, including time steps which are greater than the smallest time scales of the system. The time step regimes we shall investigate can be classified as small, intermediate, or large relative to the time scales of the fluid dynamics of the system. Small time steps resolve in a computationally explicit manner the dynamics of all the degrees of freedom of the system. Large time steps resolve in a computationally explicit manner only the degrees of freedom of the immersed elastica, with the contributions of the dynamics of the fluid degrees of freedom accounted for in only a statistical manner over a time step. Intermediate time steps resolve in a computationally explicit manner only some degrees of freedom of the fluid with the remaining degrees of freedom accounted for statistically over a time step. In this paper, uniform bounds are established for the strong error of the stochastic numerical method for each of the time step regimes. The scaling of the numerical errors with respect to the parameters of the method is then discussed.  相似文献   

10.
A new scheme for the finite difference lattice Boltzmann method is proposed, in which negative viscosity term is introduced to reduce the viscosity and the calculation time can be remarkably reduced for high Reynolds number flows. A model with additional internal degree of freedom is also presented for diatomic gases such as air, in which an additional distribution function is introduced. Direct simulations of aero-acoustics by using the proposed model and scheme are presented. Speed of sound is correctly recovered. As typical examples, the Aeolian tone emitted by a circular cylinder is successfully simulated even very low Mach number flow. Full three-dimensional sound emission is also given.  相似文献   

11.
研究了对流扩散方程、Burgers方程和Modified-Burgers方程等具有相同形式的一类偏微分方程。并且构建了带修正函数项的D1Q3格子Boltzmann模型求解这类方程。为了能准确地恢复出此宏观方程,利用Chapman-Enskog展开和多尺度分析技术,推导出了各个方向的平衡态分布函数和修正函数的具体表达式。数值计算结果表明该模型是稳定、有效的。  相似文献   

12.
The optimal relaxation time of about 0.8090 has been proposed to balance the efficiency, stability, and accuracy at a given lattice size of numerical simulations with lattice Boltzmann methods. The optimal lattice size for a desired Reynolds number can be refined by reducing the Mach number for incompressible flows. The functioned polylogarithm polynomials are defined and used to express the lattice Boltzmann equations at different time scales and to analyze the impact of relaxation times and lattice sizes on truncation errors. Smaller truncation errors can be achieved when relaxation times are greater than 0.5 and less than 1.0. The steady-state lid-driven cavity flow was chosen to validate the code of lattice Boltzmann procedures. The applications of the optimal relaxation parameters numerically balance the stability, efficiency, and accuracy through Hartmann flow. The optimal relaxation time can also be used to select the initial lattice size for the channel flow over a square cylinder with a given Mach number.  相似文献   

13.
The filling flow in micro injection molding was simulated by using the lattice Boltzmann method (LBM). A tracking algorithm for free surface to handle the complex interaction between gas and liquid phases in LBM was used for the free surface advancement. The temperature field in the filling flow is also analyzed by combining the thermal lattice Boltzmann model and the free surface method. To simulate the fluid flow of polymer melt with a high Prandtl number and high viscosity, a modified lattice Boltzmann scheme was adopted by introducing a free parameter in the thermal diffusion equation to overcome the restriction of the thermal relaxation time. The filling flow simulation of micro injection molding was successfully performed in the study.  相似文献   

14.
The simulation of a stationary fluid flow past an obstacle by means of a lattice Boltzmann method is discussed. The problem of finding appropriate boundary conditions on the boundaries of the truncated numerical domain is addressed by a method recently discussed in the literature, based on a truncated expansion of the solution. The iterative process at the heart of this method is coupled with the iteration steps of a progressive grid refinement technique that allows a rapid convergence towards a well resolved stationary state. It is shown that this combination results in a highly efficient numerical tool which can speed up the resolution process in a substantial manner.  相似文献   

15.
Polymer dynamics in a turbulent flow is a problem spanning several orders of magnitude in length and time scales. A microscopic simulation covering all those scales from the polymer segment to the inertial scale of turbulence remains improbable within the foreseeable future. We propose a multiscale simulation strategy to enhance the spatio-temporal resolution of the local Lagrangian turbulent flow by matching two different simulation techniques, i.e. direct numerical simulation for the flow as a whole, and the lattice Boltzmann method coupled to polymer dynamics at the Kolmogorov dissipation scale. Local turbulent flows sampled by Lagrangian tracer particles in the direct numerical simulation are reproduced in the lattice Boltzmann model with a finer resolution, by supplying the latter with both the correct initial condition as well as the correct time-dependent boundary condition, sampled from the former. When combined with a Molecular Dynamics simulation of a polymer chain in the lattice Boltzmann model, it provides a strategy to simulate the passive dynamics of a polymer chain in a turbulent flow covering all these scales. Although this approach allows for a fairly realistic model of the macromolecule, the back-coupling to the flow on the large scales is missing.  相似文献   

16.
In this paper, a hybrid method is proposed to study the flow-induced deformation of three-dimensional capsules. The capsules consist of Newtonian liquid drops enclosed by thin elastic membranes. In the proposed approach, the front-tracking method is coupled with the lattice Boltzmann method. The fluids inside and outside the capsule is treated as one fluid with varying physical properties, and is modeled by the lattice Boltzmann equation. The capsule membrane is explicitly tracked by the membrane nodes that are advected by the flow. The multi-block strategy of the lattice Boltzmann method is employed to refine the mesh near the capsule, which greatly increase the accuracy and efficiency of the three-dimensional computation. The capsule membrane is discretized into unstructured flat triangular elements, and a finite element model is incorporated to account for the membrane mechanics. With the present method, the transient deformation of initially spherical capsules with membrane following Neo-Hookean constitutive laws is simulated in shear flow, under various dimensionless shear rates and ratios of internal to surrounding liquid viscosities. The present results, including the Taylor shape parameter, the capsule inclination angle and the tank-treading frequency, agree well with previously published numerical results.  相似文献   

17.
A multi-population thermal lattice Boltzmann method (TLBM) is applied to simulate incompressible steady flow and heat transfer in a two-dimensional constricted channel. The method is validated for velocity and temperature profiles by comparing with a finite element method based commercial solver. The results indicate that, at various Reynolds numbers, the average flow resistance increases and the heat transfer rate decreases in a constricted channel in comparison to a straight channel. The effect of the constriction ratio is also investigated. The results show that the presented numerical model is a promising tool in analyzing simultaneous solution of fluid flow and heat transfer phenomena in complex geometries.  相似文献   

18.
As the demand of renewable energy increasing, tidal current hydro turbine has become a research focus of domestic and overseas, which is a kind of energy conversion device collecting tidal current energy and generating electricity. The water depth and flow direction have little effect on work efficiency, but it must work at a flow speed higher than a certain value. In order to increase the flow speed in the neighborhood of the turbine, a channelling device should be fixed around the hydro turbine. In order to get a better hydrodynamic of the channelling device, lattice Boltzmann method (LBM) which is a new method of computational fluid dynamics is adopted to the numerical simulation of the channelling device. The hydrodynamics of the channelling devices with different geometries and assemble gaps are compared. Finally, a program of hydrodynamic optimization is constructed.  相似文献   

19.
在计算流体力学领域中,由于流场求解的复杂性,设计出高效的并行算法成为了流场并行化计算的研究重点.以格子Boltzmann方法的理论应用为研究背景,把并行思想和格子Boltzmann方法在模拟流体流动中的计算问题结合起来,讨论了格子Boitzmann方法LBGK D2Q9模型的计算过程和计算特点.研究并实现了LBGK模型的分布式并行算法,并在自强3000上进行了算法的并行性能的分析和测试.结果表明,格子Boltzmann方法LBGKD2Q9模型适合大规模的并行计算,能提高计算的精度和速度,解决复杂流场计算问题.  相似文献   

20.
随着社会生产力的发展和发展需求的提高,移动机械臂凭借着自身优势,受到学术界和工业界的广泛关注.但在许多工作场景下,单个移动机械臂有着自由度数以及载荷的限制,无法顺利完成任务.为了更好地满足任务需求,多移动机械臂系统应运而生.在上述工业背景下,本文建立了多移动机械臂系统的动力学模型,并针对该动力学方程进行了稳定性分析.首先通过拉格朗日方程建立单个移动机械臂的动力学方程,将多体动力学软件仿真结果同动力学模型数值计算结果进行对比,验证了模型的正确性.随后联立多个移动机械臂的动力学方程和操作对象的动力学方程,得到封闭形式的多移动机械臂系统的动力学方程.再利用关节位置误差和速度误差设计李雅普诺夫函数,通过反步法获得了关节力矩的控制律.最后在多体动力学软件仿真中,察看轨迹是否能跟踪上期望信号来检验控制律的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号