首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, the optimal least-squares state estimation problem is addressed for a class of discrete-time multisensor linear stochastic systems with state transition and measurement random parameter matrices and correlated noises. It is assumed that at any sampling time, as a consequence of possible failures during the transmission process, one-step delays with different delay characteristics may occur randomly in the received measurements. The random delay phenomenon is modelled by using a different sequence of Bernoulli random variables in each sensor. The process noise and all the sensor measurement noises are one-step autocorrelated and different sensor noises are one-step cross-correlated. Also, the process noise and each sensor measurement noise are two-step cross-correlated. Based on the proposed model and using an innovation approach, the optimal linear filter is designed by a recursive algorithm which is very simple computationally and suitable for online applications. A numerical simulation is exploited to illustrate the feasibility of the proposed filtering algorithm.  相似文献   

2.
The information fusion estimation problems are investigated for multi-sensor stochastic uncertain systems with correlated noises. The stochastic uncertainties caused by correlated multiplicative noises exist in the state and observation matrices. The process noise and the observation noises are one-step auto-correlated and two-step cross-correlated, respectively. While the observation noises of different sensors are one-step cross-correlated. The optimal centralized fusion filter, predictor and smoother are proposed in the linear minimum variance sense via an innovative analysis approach. To enhance the robustness and flexibility, a distributed fusion filter is put forward, which requires the calculation of filtering error cross-covariance matrices between any two local filters. To avoid the calculation of cross-covariance matrices, another distributed fusion filter is also presented by using the covariance intersection (CI) fusion algorithm, which can reduce the computational cost. A simulation example is given to show the effectiveness of the proposed algorithms.  相似文献   

3.
This paper addresses the optimal least-squares linear estimation problem for a class of discrete-time stochastic systems with random parameter matrices and correlated additive noises. The system presents the following main features: (1) one-step correlated and cross-correlated random parameter matrices in the observation equation are assumed; (2) the process and measurement noises are one-step autocorrelated and two-step cross-correlated. Using an innovation approach and these correlation assumptions, a recursive algorithm with a simple computational procedure is derived for the optimal linear filter. As a significant application of the proposed results, the optimal recursive filtering problem in multi-sensor systems with missing measurements and random delays can be addressed. Numerical simulation examples are used to demonstrate the feasibility of the proposed filtering algorithm, which is also compared with other filters that have been proposed.  相似文献   

4.
This paper addresses the design of robust centralized fusion (CF) and weighted measurement fusion (WMF) Kalman estimators for a class of uncertain multisensor systems with linearly correlated white noises. The uncertainties of the systems include multiplicative noises, missing measurements, and uncertain noise variances. By introducing the fictitious noises, the considered system is converted into one with only uncertain noise variances. According to the minimax robust estimation principle, based on the worst-case system with the conservative upper bounds of uncertain noise variances, the robust CF and WMF time-varying Kalman estimators (predictor, filter, and smoother) are presented in a unified framework. Applying the Lyapunov equation approach, their robustness is proved in the sense that their actual estimation error variances are guaranteed to have the corresponding minimal upper bounds for all admissible uncertainties. Using the information filter, their equivalence is proved. Their accuracy relations are proved. The computational complexities of their algorithms are analyzed and compared. Compared with CF algorithm, the WMF algorithm can significantly reduce the computational burden when the number of sensors is larger. A robust weighted least squares (WLS) measurement fusion filter is also presented only based on the measurement equation, and it is proved that the robust accuracy of the robust CF or WMF Kalman filter is higher than that of robust WLS filter. The corresponding robust fused steady-state estimators are also presented, and the convergence in a realization between the time-varying and steady-state robust fused estimators is proved by the dynamic error system analysis (DESA) method. A simulation example shows the effectiveness and correctness of the proposed results.  相似文献   

5.
In this article, the state estimation problem of linear fractional order singular (FOS) systems subject to matrix uncertainties is investigated where a recursive robust algorithm is derived. Considering an uncertain discrete-time linear FOS system with added process and measurement noises, we aim to design a robust Kalman-type state estimation algorithm based on an optimal data fitting approach with a given sequence of observations. As a substitute for the stochastic formulation, this general filter is obtained by minimizing a completely deterministic regularized residual norm in its worst-possible form at each step over admissible uncertainties. Analysis of the algorithm shows that not only does the proposed robust filter cover the traditional robust Kalman filters (KFs), but it also represents an extension of the nominal fractional singular KF (FSKF) when the system is not subject to uncertainties. Furthermore, besides giving a sufficient condition for the existence of the robust filter, we derive conditions for the asymptotic properties of the filter, where we demonstrate that the filter and the Riccati equation are stable and converge when an equivalent system is detectable and stabilizable. A numerical example is included to demonstrate the performance of the introduced filter.  相似文献   

6.
The paper solves the robust weighted fusion Kalman filtering problem for systems with linearly correlated noise and mixed uncertainties of noise variances, multiplicative noises, and multiple networked inducements including missing measurements, packets dropouts, and two-step random measurement delays. It is assumed that system noise variances are uncertain but bounded above, and the other four uncertainties are compensated to fictitious white noise by the proposed model-transformation method. For the transformed local multimodel system with correlated fictitious noise, the robust local time-varying recursive Kalman filters are presented by decorrelation technique and minimax robust filtering principle. Then the six weighted fusion robust Kalman filters are presented in a unified form. The robustness of local and fused robust Kalman filters is proved by the extended Lyapunov equation approach, matrix factorization, and elementary transformation. Further, the local and fused steady-state robust Kalman filters are designed. Finally, a simulation study applied to F404 aircraft engine system is provided to examine effectiveness and applicability of the proposed algorithm.  相似文献   

7.
This paper addresses the design of robust weighted fusion Kalman estimators for a class of uncertain multisensor systems with linearly correlated white noises. The uncertainties of the systems include the same multiplicative noises perturbations both on the systems state and measurement output and the uncertain noise variances. The measurement noises and process noise are linearly correlated. By introducing two fictitious noises, the system under consideration is converted into one with only uncertain noise variances. According to the minimax robust estimation principle, based on the worst‐case systems with the conservative upper bounds of the noise variances, the four robust weighted fusion time‐varying Kalman estimators are presented in a unified framework, which include three robust weighted state fusion estimators with matrix weights, diagonal matrix weights, scalar weights, and a modified robust covariance intersection fusion estimator. The robustness of the designed fusion estimators is proved by using the Lyapunov equation approach such that their actual estimation error variances are guaranteed to have the corresponding minimal upper bounds for all admissible uncertainties. The accuracy relations among the robust local and fused time‐varying Kalman estimators are proved. The corresponding robust local and fused steady‐state Kalman estimators are also presented, a simulation example with application to signal processing to show the effectiveness and correctness of the proposed results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In this article, we study the distributed Kalman filtering fusion problem for a linear dynamic system with multiple sensors and cross-correlated noises. For the assumed linear dynamic system, based on the newly constructed measurements whose measurement noises are uncorrelated, we derive a distributed Kalman filtering fusion algorithm without feedback, and prove that it is an optimal distributed Kalman filtering fusion algorithm. Then, for the same linear dynamic system, also based on the newly constructed measurements, a distributed Kalman filtering fusion algorithm with feedback is proposed. A rigorous performance analysis is dedicated to the distributed fusion algorithm with feedback, which shows that the distributed fusion algorithm with feedback is also an optimal distributed Kalman filtering fusion algorithm; the P matrices are still the estimate error covariance matrices for local filters; the feedback does reduce the estimate error covariance of each local filter. Simulation results are provided to demonstrate the validity of the newly proposed fusion algorithms and the performance analysis.  相似文献   

9.
10.
对于一类在状态转移阵和系统观测阵中带相同的状态依赖乘性噪声、带噪声依赖乘性噪声、一步随机观测滞后、丢包和不确定噪声方差的多传感器网络化系统,文章研究其鲁棒集中式融合稳态滤波问题.应用增广方法将系统转换为带随机参数矩阵、相同过程和观测噪声的集中式融合系统.应用去随机化方法和虚拟噪声技术,系统进一步转化为仅带不确定噪声方差的集中式融合系统.根据极大极小鲁棒估计原理,本文提出了鲁棒集中式融合稳态Kalman估值器(预报器、滤波器和平滑器),证明了所提出的集中式融合估值器的鲁棒性,给出了鲁棒局部与集中式融合估值器之间的精度关系.本文提出了应用于多传感器多通道滑动平均(MA)信号估计的一个实例,给出了相应的鲁棒局部和集中式融合信号估值器.仿真实验验证了所提出方法的有效性和正确性.  相似文献   

11.
对带不确定参数和噪声方差的多传感器定常系统,引入虚拟白噪声补偿不确定参数,可将其转化为带已知参数和不确定噪声方差系统.应用极大极小鲁棒估值原理和加权最小二乘法,基于带噪声方差保守上界的最坏情形保守系统,提出了鲁棒加权观测融合Kalman滤波器,并证明了它与集中式融合鲁棒Kalman滤波器是等价的,且融合器的鲁棒精度高于每个局部滤波器鲁棒精度.一个Monte-Carlo仿真例子说明了如何寻求不确定参数的鲁棒域和如何搜索保守性较小的虚拟噪声方差上界.  相似文献   

12.
张鹏  齐文娟  邓自立 《自动化学报》2014,40(11):2585-2594
研究了分簇传感网络分布式融合Kalman滤波器.根据最邻近原则将传感网络分成簇,每簇由传感节点和簇首组成.应用极大极小鲁棒估计原理,基于带噪声方差最大保守上界的最坏保守系统,对带不确定性噪声方差的分簇传感网络系统提出了两级鲁棒观测融合Kalman滤波器.当传感器数量非常多的时候它可以明显减小通信负担.在鲁棒性分析中利用Lyapunov方程方法证明了局部和融合Kalman滤波器的鲁棒性.提出了鲁棒精度的概念,并证明了局部和融合鲁棒Kalman滤波器之间的鲁棒精度关系.证明了两级加权观测融合器的鲁棒精度等价于相应的全局集中式鲁棒融合器的鲁棒精度,并且高于每个局部观测融合器的鲁棒精度.一个仿真例子说明上述结果的准确性.  相似文献   

13.
The robust fusion steady‐state filtering problem is investigated for a class of multisensor networked systems with mixed uncertainties including multiplicative noises, one‐step random delay, missing measurements, and uncertain noise variances, the phenomena of one‐step random delay and missing measurements occur in a random way, and are described by two Bernoulli distributed random variables with known conditional probabilities. Using a model transformation approach, which consists of augmented approach, derandomization approach, and fictitious noise approach, the original multisensor system under study is converted into a multimodel multisensor system with only uncertain noise variances. According to the minimax robust estimation principle, based on the worst‐case subsystems with conservative upper bounds of uncertain noise variances, the robust local steady‐state Kalman estimators (predictor, filter, and smoother) are presented in a unified framework. Applying the optimal fusion algorithm weighted by matrices, the robust distributed weighted state fusion steady‐state Kalman estimators are derived for the considered system. In addition, by using the proposed model transformation approach, the centralized fusion system is obtained, furthermore the robust centralized fusion steady‐state Kalman estimators are proposed. The robustness of the proposed estimators is proved by using a combination method consisting of augmented noise approach, decomposition approach of nonnegative definite matrix, matrix representation approach of quadratic form, and Lyapunov equation approach, such that for all admissible uncertainties, the actual steady‐state estimation error variances of the estimators are guaranteed to have the corresponding minimal upper bounds. The accuracy relations among the robust local and fused steady‐state Kalman estimators are proved. An example with application to autoregressive signal processing is proposed, which shows that the robust local and fusion signal estimation problems can be solved by the state estimation problems. Simulation example verifies the effectiveness and correctness of the proposed results.  相似文献   

14.
This paper addresses the problem of designing robust fusion time‐varying Kalman estimators for a class of multisensor networked systems with mixed uncertainties including multiplicative noises, missing measurements, packet dropouts, and uncertain‐variance linearly correlated measurement and process white noises. By the augmented approach, the original system is converted into a stochastic parameter system with uncertain noise variances. Furthermore, applying the fictitious noise approach, the original system is converted into one with constant parameters and uncertain noise variances. According to the minimax robust estimation principle, based on the worst‐case system with the conservative upper bounds of the noise variances, the five robust fusion time‐varying Kalman estimators (predictor, filter, and smoother) are presented by using a unified design approach that the robust filter and smoother are designed based on the robust Kalman predictor, which include three robust weighted state fusion estimators with matrix weights, diagonal matrix weights, and scalar weights, a modified robust covariance intersection fusion estimator, and robust centralized fusion estimator. Their robustness is proved by using a combination method, which consists of Lyapunov equation approach, augmented noise approach, and decomposition approach of nonnegative definite matrix, such that their actual estimation error variances are guaranteed to have the corresponding minimal upper bounds for all admissible uncertainties. The accuracy relations among the robust local and fused time‐varying Kalman estimators are proved. A simulation example is shown with application to the continuous stirred tank reactor system to show the effectiveness and correctness of the proposed results.  相似文献   

15.
This paper investigates the distributed fusion Kalman filtering over clustering sensor networks. The sensor network is partitioned as clusters by the nearest neighbor rule and each cluster consists of sensing nodes and cluster-head. Using the minimax robust estimation principle, based on the worst-case conservative system with the conservative upper bounds of noise variances, twolevel robust measurement fusion Kalman filter is presented for the clustering sensor network systems with uncertain noise variances.It can significantly reduce the communication load and save energy when the number of sensors is very large. A Lyapunov equation approach for the robustness analysis is presented, by which the robustness of the local and fused Kalman filters is proved. The concept of the robust accuracy is presented, and the robust accuracy relations among the local and fused robust Kalman filters are proved. It is proved that the robust accuracy of the two-level weighted measurement fuser is equal to that of the global centralized robust fuser and is higher than those of each local robust filter and each local weighted measurement fuser. A simulation example shows the correctness and effectiveness of the proposed results.  相似文献   

16.
本文研究带不确定方差乘性和加性噪声和带状态相依及噪声相依乘性噪声的多传感器系统鲁棒加权融合估计问题.通过引入虚拟噪声补偿乘性噪声的不确定性,将原系统化为带确定参数和不确定加性噪声方差的系统,进而利用Lyapunov方程方法提出在统一框架下的按对角阵加权融合极大极小鲁棒稳态Kalman估值器(预报器、滤波器和平滑器),其中基于预报器设计滤波器和平滑器,并给出每个融合器的实际估值误差方差的最小上界.证明了融合器的鲁棒精度高于每个局部估值器的鲁棒精度.应用于不间断电源(uninterruptible power system,UPS)系统鲁棒融合滤波的仿真例子说明了所提结果的正确性和有效性.  相似文献   

17.
Self-tuning weighted measurement fusion Kalman filter and its convergence   总被引:1,自引:0,他引:1  
For multisensor systems, when the model parameters and the noise variances are unknown, the consistent fused estimators of the model parameters and noise variances are obtained, based on the system identification algorithm, correlation method and least squares fusion criterion. Substituting these consistent estimators into the optimal weighted measurement fusion Kalman filter, a self-tuning weighted measurement fusion Kalman filter is presented. Using the dynamic error system analysis (DESA) method, the convergence of the self-tuning weighted measurement fusion Kalman filter is proved, i.e., the self-tuning Kalman filter converges to the corresponding optimal Kalman filter in a realization. Therefore, the self-tuning weighted measurement fusion Kalman filter has asymptotic global optimality. One simulation example for a 4-sensor target tracking system verifies its effectiveness.  相似文献   

18.
This paper deals with state estimation problem for linear uncertain systems with correlated noises and incomplete measurements. Multiplicative noises enter into state and measurement equations to account for the stochastic uncertainties. And one-step autocorrelated and cross-correlated process noises and measurement noises are taken into consideration. Using the latest received measurement to compensate lost packets, the modified multi-step random delays and packet dropout model is adopted in the present paper. By augmenting system states, measurements and new defined variables, the original system is transformed into the stochastic parameter one. On this basis, the optimal linear estimators in the minimum variance sense are designed via projection theory. They depend on the variances of multiplicative noises, the one-step correlation coefficient matrices together with the probabilities of delays and packet losses. The sufficient condition on the existence of steady-state estimators is then given. Finally, simulation results illustrate the performance of the developed algorithms.  相似文献   

19.
This paper addresses the distributed fusion filtering problem for multi-sensor systems with finite-step correlated noises. The process noise and observation noises of different sensors are finite-step auto- and cross-correlated, respectively. Based on the optimal local filtering algorithms that we presented before, the filtering error cross-covariance matrices between any two local filters are derived based on an innovation analysis approach. A distributed fusion filter is put forward by using matrix-weighted fusion estimation algorithm in the linear unbiased minimum variance sense. Finally, the proposed algorithms are extended to systems with random parameter matrices. Two simulation examples are given to show the effectiveness of the proposed algorithms.  相似文献   

20.
广义系统信息融合稳态与自校正满阶Kalman滤波器   总被引:2,自引:1,他引:1  
基于线性最小方差标量加权融合算法和射影理论,对带多个传感器和带相关噪声的广义系统,提出了分布式标量加权融合稳态满阶Kalman滤波器.推得了任两个传感器子系统之间的稳态满阶滤波误差互协方差阵,其解可任选初值离线迭代计算.所提出的稳态融合滤波器避免了每时刻计算协方差阵和融合权重,减小了在线计算负担.当系统含有未知模型参数时,基于递推增广最小二乘算法和标量加权融合算法,提出了一种两段融合自校正状态滤波器.其中第1段融合获得未知参数的融合估计;第2段融合获得分布式自校正融合状态滤波器.与局部估计和加权平均融合估计相比,所提出的标量加权融合参数估计和自校正状态估计都具有更高的精度.仿真研究验证了其有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号