首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of unmanned aerial vehicles has significantly increased for forming an ad hoc network owing to their ability to perform in exciting environment such as armed attacks, border surveillance, disaster management, rescue operation, and transportation. Such types of ad hoc networks are popularly known as flying ad hoc networks (FANETs). The FANET nodes have 2 prominent characteristics—collaboration and cooperation. Trust plays an important role in predicting the behavior of such nodes. Researchers have proposed various methods (direct and indirect) for calculation of the trust value of a given node in ad hoc networks, especially in mobile ad hoc networks and vehicular ad hoc networks. The major characteristic that differentiates a FANET from other ad hoc networks is the velocity of the node; as a result, there are frequent losses in connection and topology change. Therefore, the existing methods of trust calculation are not efficient and effective. In this paper, a fuzzy‐based novel trust model has been proposed to handle the behavioral uncertainty of FANET nodes. Nodes are classified using a multicriteria fuzzy classification method based on node's behavior and performance in the fuzzy and complex environment. Quality of service and social parameter (recommendation) are considered for evaluating the trust value of each node to segregate the selfish and malicious nodes. With the node classification, FANET nodes are rewarded or punished to transform node behavior into a trust value. Compared with the existing trust techniques, the simulation results show that the proposed model has better adaptability, accuracy, and performance in FANETs.  相似文献   

2.
The performance of ad hoc networks depends on cooperation and trust among distributed nodes. To enhance security in ad hoc networks, it is important to evaluate trustworthiness of other nodes without centralized authorities. In this paper, we present an information theoretic framework to quantitatively measure trust and model trust propagation in ad hoc networks. In the proposed framework, trust is a measure of uncertainty with its value represented by entropy. We develop four Axioms that address the basic understanding of trust and the rules for trust propagation. Based on these axioms, we present two trust models: entropy-based model and probability-based model, which satisfy all the axioms. Techniques of trust establishment and trust update are presented to obtain trust values from observation. The proposed trust evaluation method and trust models are employed in ad hoc networks for secure ad hoc routing and malicious node detection. A distributed scheme is designed to acquire, maintain, and update trust records associated with the behaviors of nodes' forwarding packets and the behaviors of making recommendations about other nodes. Simulations show that the proposed trust evaluation system can significantly improve the network throughput as well as effectively detect malicious behaviors in ad hoc networks.  相似文献   

3.
In a mobile ad hoc network (MANET), the nodes act both as traffic sources and as relays that forward packets from other nodes along multi-hop routes to the destination. Such networks are suited to situations in which a wireless infrastructure is unavailable, infeasible, or prohibitively expensive. However, the lack of a secure, trusted infrastructure in such networks make secure and reliable packet delivery very challenging. A given node acting as a relay may exhibit Byzantine behavior with respect to packet forwarding, i.e., arbitrary, deviant behavior, which disrupts packet transmission in the network. For example, a Byzantine node may arbitrarily choose to drop or misroute a certain percentage of the packets that are passed to it for forwarding to the next hop. In earlier work, we proposed a trust establishment framework, called Hermes, which enables a given node to determine the “trustworthiness” of other nodes with respect to reliable packet delivery by combining first-hand trust information obtained independently of other nodes and second-hand trust information obtained via recommendations from other nodes. A deficiency of the Hermes scheme is that a node can fail to detect certain types of Byzantine behavior, such as packet misforwarding directed at a particular source node. In this paper, we propose new mechanisms to make Hermes robust to Byzantine behavior and introduce a punishment policy that discourages selfish node behavior. We present simulation results that demonstrate the effectiveness of the proposed scheme in a variety of scenarios involving Byzantine nodes that are malicious both with respect to packet forwarding and trust propagation.  相似文献   

4.
The scarce resources of a mobile ad hoc network (MANET) should not be wasted attending selfish nodes (those nodes that use resources from other nodes to send their own packets, without offering their own resources to forward other nodes’ packets). Thus, rational nodes (those nodes willing to cooperate if deemed worthy) must detect and isolate selfish nodes in order to cooperate only among themselves. To achieve this purpose, in this paper we present a new game theoretic trust model called DECADE (Distributed Emergent Cooperation through ADaptive Evolution). The design of DECADE is shown by first, analyzing a simple case of packet forwarding between two nodes, and then the results are extended to bigger networks. In DECADE, each node seeks individually to maximize its chance to deliver successfully their own packets, so that the cooperation among rational nodes and the isolation of selfish nodes appear as an emergent collective behavior. This behavior emerges as long as there is a highly dynamic interaction among nodes. So, for those cases where the mobility alone does not suffice to provide this interaction, DECADE includes a sociability parameter that encourages nodes to interact among them for faster learning and adaptability. Additionally, DECADE introduces very low overhead on computational and communication resources, achieving close to optimal cooperation levels among rational nodes and almost complete isolation of selfish nodes.  相似文献   

5.
一种基于邻居合作监测的移动Ad hoc网络信任模型   总被引:1,自引:1,他引:0  
针对自私节点的恶意丢包行为,将节点和其邻居节点所监测的结果结合起来,计算出节点间的信任度,并以此作为路由选择的依据来促进节点间的相互合作,提出一种基于邻居合作监测的移动Adhoc网络信任模型.将信任模型应用于DSR路由协议并在NS2中进行仿真实验,结果表明该信任模型可以有效地缓解自私节点造成的影响,提高了网络的分组投递率.  相似文献   

6.
在感知无线电自私ad hoc网络环境下提出一种低代销的诚实能效路由(Lowest Cost Path,LCP),将路由的开销结合对主用户的干扰和节点剩余能量,利用格罗夫斯-克拉克-威科瑞(Vickrey-Clark-Groves,VCG)定价机制给LCP上每个中继节点以一定报酬促使节点之间的合作,并证明VCG机制下节点真实的反映自身的类型是一个占优策略。仿真结果表明,该路由算法有效实现了感知无线电自私ad hoc网络的诚实能效路由,与现有最短路径路由协议比较,该协议具有更好的性能。  相似文献   

7.
Trust management is a promising approach to conduct nodes’ transactions and establish management interactions in mobile ad hoc networks, in which collaboration between nodes is critical to achieve system goals. Lack of centralized management, severe resource constraints (e.g. computing power, energy, bandwidth), and important network dynamics (e.g. topology changes, node mobility, node failure, propagation channel conditions) make the trust management a challenging task in such a network. Mainly, trust management frameworks are prone to attacks trying to deceive nodes’ estimation on other nodes’ trustworthiness, referred to as trust-distortion attacks. In order to inhibit such attacks, we propose a Trust-distortion Resistant Trust Management Scheme (TRTMS) which provides nodes with an accurate estimation on other nodes’ behavior and enables them to handle different trust-distortion attacks in a multi-attack environment. Simulation results prove that TRTMS significantly outperforms the existing alternatives in the literature in presence of simultaneous and contradictory different trust-distortion attacks.  相似文献   

8.
In autonomous ad hoc networks, nodes usually belong to different authorities and pursue different goals. In order to maximize their own performance, nodes in such networks tend to be selfish, and are not willing to forward packets for the benefits of other nodes. Meanwhile, some nodes might behave maliciously and try to disrupt the network and waste other nodes' resources. In this paper, we present an attack-resilient cooperation stimulation (ARCS) system for autonomous ad hoc networks to stimulate cooperation among selfish nodes and defend against malicious attacks. In the ARCS system, the damage that can be caused by malicious nodes can be bounded, the cooperation among selfish nodes can be enforced, and the fairness among nodes can also be achieved. Both theoretical analysis and simulation results have confirmed the effectiveness of the ARCS system. Another key property of the ARCS system lies in that it is completely self-organizing and fully distributed, and does not require any tamper-proof hardware or central management points.  相似文献   

9.
In ad hoc networks, wireless nodes rely on each other to transmit data over multi-hops by forwarding packets. A selfish node may decide not to forward packets for other nodes to save its own resource but still use the network to send and receive data. Such a selfish behavior can degrade network performance significantly. Most existing work took observation, reputation and token based mechanisms. However observation based mechanism suffers from mobility and collusion; reputation and token based mechanisms suffer from system complexity and efficiency. In this paper, we propose One More Hop (OMH) protocol which suppresses selfish behavior from a totally new angle. Basing on the fact that the selfish but rational nodes still want to receive and send packets, if a node can not determine whether a packet is destined for it or not, it can not drop the packet. With modified routing protocol and cryptographic techniques, OMH achieves this design target. It is robust and efficient. The simulation shows that OMH works well under different network situations.  相似文献   

10.
In this paper, we analyze the problem of throughput-efficient distributed coalition formation (CF) of selfish/altruistic nodes in ad hoc radio networks. We formulate the problem as a hedonic CF game with non-transferable utility and propose different preference relations (CF rules) based on individual/group rate improvement of distributed nodes. We develop a hedonic CF algorithm, through which distributed nodes may self-organize into stable throughput-efficient disjoint coalitions. We apply the concept of frequency reuse over different coalitions, such that the members of each coalition will transmit over orthogonal sub-bands with the available spectrum being optimally allocated among them. We study the computational complexity and convergence properties of the proposed hedonic CF algorithm under selfish and altruistic preferences, and present means to guarantee Nash-stability. In addition, we identify the scenarios in which a CF process might lead to instability (CF cycle), and we propose methods to avoid cycles and define different exit procedures if a CF cycle is inevitable. Performance analysis shows that the proposed algorithm with optimal bandwidth allocation provides a substantial gain, in terms of average payoff per link, over existing coalition formation algorithms for a wide SNR range.  相似文献   

11.
We consider the problem of establishing a route and sending packets between a source/destination pair in ad hoc networks composed of rational selfish nodes whose purpose is to maximize their own utility. In order to motivate nodes to follow the protocol specification, we use side payments that are made to the forwarding nodes. Our goal is to design a fully distributed algorithm such that (1) a node is always better off participating in the protocol execution (individual rationality), (2) a node is always better off behaving according to the protocol specification (truthfulness), (3) messages are routed along the most energy-efficient (least cost) path, and (4) the message complexity is reasonably low. We introduce the COMMIT protocol for individually rational, truthful, and energy-efficient routing in ad hoc networks. To the best of our knowledge, this is the first ad hoc routing protocol with these features. COMMIT is based on the VCG payment scheme in conjunction with a novel game-theoretic technique to achieve truthfulness for the sender node. By means of simulation, we show that the inevitable economic inefficiency is small. As an aside, our work demonstrates the advantage of using a cross-layer approach to solving problems: Leveraging the existence of an underlying topology control protocol, we are able to simplify the design and analysis of our routing protocol and reduce its message complexity. On the other hand, our investigation of the routing problem in the presence of selfish nodes disclosed a new metric under which topology control protocols can be evaluated: the cost of cooperation.  相似文献   

12.
In autonomous mobile ad hoc networks, nodes belong to different authorities and pursue different goals; therefore, cooperation among them cannot be taken for granted. Meanwhile, some nodes may be malicious, whose objective is to damage the network. In this paper, we present a joint analysis of cooperation stimulation and security in autonomous mobile ad hoc networks under a game theoretic framework. We first investigate a simple yet illuminating two-player packet forwarding game and derive the optimal and cheat-proof packet forwarding strategies. We then investigate the secure routing and packet forwarding game for autonomous ad hoc networks in noisy and hostile environments and derive a set of reputation-based cheat-proof and attack-resistant cooperation stimulation strategies. When analyzing the cooperation strategies, besides Nash equilibrium, other optimality criteria, such as Pareto optimality, subgame perfection, fairness, and cheat-proofing, have also been considered. Both analysis and simulation studies have shown that the proposed strategies can effectively stimulate cooperation among selfish nodes in autonomous mobile ad hoc networks under noise and attacks, and the damage that can be caused by attackers is bounded and limited  相似文献   

13.
One of the most critical issues in wireless ad hoc networks is represented by the limited availability of energy within network nodes. Thus, making good use of energy is a must in ad hoc networks. In this paper, we define as network lifetime the time period from the instant when the network starts functioning to the instant when the first network node runs out of energy. Our objective is to devise techniques to maximize the network lifetime in the case of cluster-based systems, which represent a significant sub-set of ad hoc networks. Cluster-based ad hoc networks comprise two types of nodes: cluster-heads and ordinary nodes. Cluster-heads coordinate all transmissions from/to ordinary nodes and forward all traffic in a cluster, either to other nodes in the cluster or to other cluster-heads. In this case, to prolong the network lifetime we must maximize the lifetime of the cluster-heads because they are the critical network element from the energy viewpoint. We propose an original approach to maximize the network lifetime by determining the optimal assignment of nodes to cluster-heads. Given the number of cluster-heads, the complexity of the proposed solution grows linearly with the number of network nodes. The network topology is assumed to be either static or slowly changing. Two working scenarios are considered. In the former, the optimal network configuration from the energy viewpoint is computed only once; in the latter, the network configuration can be periodically updated to adapt to the evolution of the cluster-heads energy status. In both scenarios, the presented solution greatly outperforms the standard assignment of nodes to cluster-heads, based on the minimum transmission power criterion.  相似文献   

14.
The problem of cooperation among selfish nodes in ad hoc networks has gained recently a considerable attention. In this paper we propose a dynamic game theoretical model of cooperation in ad hoc networks, based on evolutionary game theory. Our model enables us to make predictions about possible equilibrium points of the network composed of the selfish and learning nodes, which can dynamically adjust their strategy in order to maximize their own payoff. In particular, we show that if an ad hoc network implements a reputation mechanism, all long term equilibrium points of the system will include cooperating nodes. In fact, in most of the equilibrium points, the cooperators will constitute a majority of the nodes. We believe that this new approach, borrowing from biological research, can have broader applications for studying dynamics of distributed communication systems.  相似文献   

15.
In this paper we propose a distributed trust model for certificate revocation in ad hoc networks. The proposed model allows trust to be built over time as the number of interactions between nodes increase. Furthermore, trust in a node is defined not only in terms of its potential for maliciousness, but also in terms of the quality of the service it provides. Trust in nodes where there is little or no history of interactions is determined by recommendations from other nodes. If the nodes in the network are selfish, trust is obtained by an exchange of portfolios. Bayesian networks form the underlying basis for this model.  相似文献   

16.
Mobile ad hoc networks (MANETs) are spontaneously deployed over a geographically limited area without well-established infrastructure. The networks work well only if the mobile nodes are trusty and behave cooperatively. Due to the openness in network topology and absence of a centralized administration in management, MANETs are very vulnerable to various attacks from malicious nodes. In order to reduce the hazards from such nodes and enhance the security of network, this paper presents a dynamic trust prediction model to evaluate the trustworthiness of nodes, which is based on the nodes’ historical behaviors, as well as the future behaviors via extended fuzzy logic rules prediction. We have also integrated the proposed trust predication model into the Source Routing Mechanism. Our novel on-demand trust-based unicast routing protocol for MANETs, termed as Trust-based Source Routing protocol (TSR), provides a flexible and feasible approach to choose the shortest route that meets the security requirement of data packets transmission. Extensive experiments have been conducted to evaluate the efficiency and effectiveness of the proposed mechanism in malicious node identification and attack resistance. The results show that TSR improves packet delivery ratio and reduces average end-to-end latency.  相似文献   

17.
High capacity real-time data communications in sensor networks usually require multihop routing and ad hoc routing protocols. Unfortunately, ad hoc routing protocols usually do not scale well and cannot handle dense situations efficiently. These two issues-scalability and density-are the major limitations when we apply ad hoc routing schemes to sensor networks. Passive clustering (PC) classifies ad hoc/sensor nodes into critical and noncritical nodes without any extra transmission. By 2-b piggybacking and monitoring user traffic (e.g., data polling requests from a sink), PC deploys the clustering structure "for free". Moreover, PC makes even the first flooding as efficient as all subsequent floodings (i.e., no initialization overhead). PC introduces many benefits, including efficient flooding and density adaptation. As a result, PC reduces control overhead of ad hoc routing protocols significantly and, as a consequence, enables ad hoc routing in large, dense sensor networks. The resulting structure can be utilized in cluster-based ad hoc network/sensor networking as well as for active node selection.  相似文献   

18.
We propose a novel trust and probabilistic node selection mechanism for content distribution in mobile ad hoc networks. Due to the open nature of such networks which as a rule do not have strict node membership control, the selection of trustworthy nodes is an important challenge, especially as the resources (e.g., battery, bandwidth) of the mobile devices are limited and should not be wasted on erroneous or malicious content. Our proposal, in addition to considering the trustworthiness of nodes, ensures that the traffic load is equally shared amongst the population of nodes, thus further conserving mobile node resources. We analyse the proposed mechanisms and evaluate it against selected previously proposed trust schemes which, in the majority, favour the selection of the most trustworthy node. We demonstrate the benefits of our proposal which provides load balancing and prevents overuse of a single node’s resources, while still providing a good performance in regards to accurately choosing trustworthy nodes to provide the required content.  相似文献   

19.
Multihop sensor network design for wide-band communications   总被引:1,自引:0,他引:1  
This paper presents a master/slave cellular-based mobile ad hoc network architecture for multihop multimedia communications. The proposed network is based on a new paradigm for solving the problem of cluster-based ad hoc routing when utilizing existing wireless local area network (WLAN) technologies. The network architecture is a mixture of two different types of networks: infrastructure (master-and-slave) and ad hoc. In this architecture, the participating slave nodes (SNs) in each cluster communicate with each other via their respective master nodes (MNs) in an infrastructure network. In contrast to traditional cellular networks where the base stations are fixed (e.g., interconnected via a wired backbone), in this network the MNs (e.g., base stations) are mobile; thus, interconnection is accomplished dynamically and in an ad hoc manner. For network implementation, the IEEE 802.11 WLAN has been deployed. Since there is no stationary node in this network, all the nodes in a cluster may have to move together as a group. However, in order to allow a mobile node to move to another cluster, which requires changing its point of attachment, a handoff process utilizing Mobile IP version 6 (IPv6) has been considered. For ad hoc routing between the master nodes (i.e., MNs), the Ad hoc On-demand Distance Vector (AODV) Routing protocol has been deployed. In assessing the network performance, field test trials have been carried out to measure the proposed network performance. These measurements include packet loss, delays under various test conditions such as a change of ad hoc route, handoffs, etc.  相似文献   

20.

Mobile Ad hoc Networks are sensitive to selfish behavior that may occur due to restricted power or other resources. Several approaches have been investigated so far to address this problem. In many of them, upon detection, a selfish node is punished with isolation from network services access and in most cases with no possibility for redemption. In this paper, we show that selfish behavior can be exploited to improve network performance. We modify an existing routing protocol by introducing an altruism coefficient to model the overall satisfaction of every node from the network services. When the altruism coefficient is increased, the selfish behavior is decreased. We extend our approach by introducing a common welfare factor, which actually enforces the nodes to cooperate when the network connectivity is critical. A network simulator is utilized to show the impact of our schemes on the performance of the routing protocol when selfish nodes are present in the network.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号