首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
We demonstrate the deposition of amorphous and anatase TiO2 on indium tin oxide (ITO) substrates via the process of sputtering, and the use of these materials as electron-collecting layers (ECLs) in inverted-type organic photovoltaics (OPVs). Anatase TiO2 was obtained via vacuum-annealing of as-deposited amorphous TiO2 at 300 °C. No deterioration of optical and electrical properties of ITO was observed after both sputter-deposition of TiO2 and annealing process. The anatase TiO2 proved to be an effective ECL when employed in inverted OPVs using bulk heterojunction photoactive layer of poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester, achieving a power conversion efficiency of 3.3% (JSC = 9.0 mA cm?2, VOC = 0.62 V and FF = 0.60).  相似文献   

2.
New organic dyes containing fluorene appended dithienopyrrole as electron rich linker, different arylamine/heterocyclic units as conjugating donors and cyanoacrylic acid as acceptor have been synthesized and characterized as sensitizers for dye-sensitized solar cells. The effect of different conjugated donors such as triarylamine, carbazole and phenothiazine on the photophysical, electrochemical and photovoltaic properties is investigated. The optical and electrochemical properties of the dyes are strongly influenced by conjugating donors. The dye containing phenothiazine donor exhibited longer wavelength absorption and low oxidation potential. The time dependent density functional calculations performed on the dye models reveal charge transfer character for the longer wavelength absorption. The dye-sensitized solar cells fabricated using a dye containing fluorenyldiphenylamine donor displayed highest power conversion efficiency (6.81%) in the series originating from the high short circuit current density (JSC = 14.01 mA cm−2) and high open circuit voltage (VOC = 738 mV).  相似文献   

3.
Three 2,2-dicyanovinyl (DCV) end-capped A-π-D-π-A type oligothiophenes (DCV-OTs) containing dithieno[3,2-b:2′,3′-d]silole (DTSi), cyclopenta[1,2-b:3,4-b′]dithiophene (DTCP) or dithieno[3,2-b:2′,3′-d]pyrrole (DTPy) unit as the central donor part, mono-thiophene as the π-conjugation bridge were synthesized. The absorption spectroscopies, cyclic voltammetry of these compounds were characterized. Results showed that all these compounds have intensive absorption band over 500–680 nm with a LUMO energy level around −3.80 eV, which is slightly higher than that of [6,6]phenyl-C61-butyric acid methyl ester (PC61BM, ELUMO = −4.01 eV), but lower than that of poly(3-hexylthiophene) (P3HT, ELUMO = −2.91 eV). Solution processed bulk heterojunction “all-thiophene” solar cells using P3HT as electron donor and the above mentioned oligothiophenes as electron acceptor were fabricated and tested. The highest power conversion efficiency (PCE) of 1.31% was achieved for DTSi-cored compound DTSi(THDCV)2, whereas PTB7:DTSi(THDCV)2 based device showed slightly higher PCE of 1.56%. Electron mobilities of these three compounds were measured to be around 10−5 cm2 V−1 s−1 by space charge limited current method, which is much lower than that of PC61BM, and was considered as one of the reason for the low photovoltaic performance.  相似文献   

4.
Donor–acceptor (D–A) type conjugated polymers have been developed to absorb longer wavelength light in polymer solar cells (PSCs) and to achieve a high charge carrier mobility in organic field-effect transistors (OFETs). PDTDP, containing dithienothiophene (DTT) as the electron donor and diketopyrrolopyrrole (DPP) as the electron acceptor, was synthesized by stille polycondensation in order to achieve the advantages of D–A type conjugated polymers. The polymer showed optical band gaps of 1.44 and 1.42 eV in solution and in film, respectively, and a HOMO level of 5.09 eV. PDTDP and PC71BM blends with 1,8-diiodooctane (DIO) exhibited improved performance in PSCs with a power conversion efficiency (PCE) of 4.45% under AM 1.5G irradiation. By investigating transmission electron microscopy (TEM), atomic force microscopy (AFM), and the light intensity dependence of JSC and VOC, we conclude that DIO acts as a processing additive that helps to form a nanoscale phase separation between donor and acceptor, resulting in an enhancement of μh and μe, which affects the JSC, EQE, and PCE of PSCs. The charge carrier mobilities of PDTDP in OFETs were also investigated at various annealing temperatures and the polymer exhibited the highest hole and electron mobilities of 2.53 cm2 V−1 s−1 at 250 °C and 0.36 cm2 V−1 s−1 at 310 °C, respectively. XRD and AFM results demonstrated that the thermal annealing temperature had a critical effect on the changes in the crystallinity and morphology of the polymer. The low-voltage device was fabricated using high-k dielectric, P(VDF-TrFE) and P(VDF-TrFE-CTFE), and the carrier mobility of PDTDP was reached 0.1 cm2 V−1 s−1 at Vd = −5 V. PDTDP complementary inverters were fabricated, and the high ambipolar characteristics of the polymer resulted in an output voltage gain of more than 25.  相似文献   

5.
New conjugated copolymers (P1?P3) containing dipolar side chains connected to the main chain via triphenylamine donors have been synthesized and characterized. The side chains of these polymers have an electron deficient benzothiadiazole moiety in the spacer, but with different acceptors at the end. By changing the acceptor moieties of the side chain, the absorption spectra and HOMO/LUMO gaps of the polymers can be fine-tuned, ranging from 1.86 to 1.59 eV. Solution processed bulk heterojunction (BHJ) solar cells using these polymers as the donor and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as the acceptor were fabricated and measured under 100 mW cm?2 of AM 1.5 illumination. The cell based on the blend of P1/PCBM (1:1, w/w) exhibited the highest power conversion efficiency of 1.78%, with open circuit voltage (Voc) = 0.79 V, short circuit current (Jsc) = 6.63 mA cm?2 and fill factor (FF) = 0.34, respectively.  相似文献   

6.
Cu2FeSnS4 thin film, with potential as an effective photovoltaic absorber, was prepared by sulfurizing a (Cu,Sn)S/FeS-structured precursor prepared via successive ionic layer absorption and reaction combined with chemical bath deposition. X-Ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and UV-vis-NIR absorbance measurements showed that the Cu2FeSnS4 thin film exhibits large agglomeration of rod-shaped grains, a bandgap of Eg=1.22 eV, and a high optical absorption coefficient (>104 cm−1).  相似文献   

7.
The aim of this work is to model the properties of GaInAsNSb/GaAs compressively strained structures. Indeed, Ga1?xInxAs1?y?zNySbz has been found to be a potentially superior material to GaInAsN for long wavelength laser dedicated to optical fiber communications. Furthermore, this material can be grown on GaAs substrate while having a bandgap smaller than that of GaInNAs. The influence of nitrogen and antimony on the bandgap and the transition energy is explored. Also, the effect of these two elements on the optical gain and threshold current density is investigated. For example, a structure composed of one 7.5 nm thick quantum well of material with In=30%, N=3.5%, Sb=1% composition exhibits a threshold current density of 339.8 A/cm2 and an emission wavelength of 1.5365 μm (at T=300 K). It can be shown that increasing the concentration of indium to 35% with a concentration of nitrogen and antimony, of 2.5% and 1%, respectively, results in a decrease of the threshold current density down to 253.7 A/cm2 for a two well structure. Same structure incorporating five wells shows a threshold current density as low as 221.4 A/cm2 for T=300 K, which agrees well with the reported experimental results.  相似文献   

8.
《Organic Electronics》2014,15(1):266-275
Three novel carbazole-based A-π-D-π-A-featured dyes (CSG1CSG3) have been designed, synthesized for applications in dye-sensitized solar cells and fully characterized with NMR, MS, IR, UV–vis and electrochemical measurements. These dyes share the same donor (N-hexylcarbazole) and acceptor/anchoring group (cyanoacrylic acid), but differs in conjugated linkers incorporated, such as benzene, furan or thiophene, to configure the novel A-π-D-π-A framework for effective electron flow. The power conversion efficiencies were observed to be sensitive to the π-bridging linker moiety. The photovoltaic experiments showed that dye with a benzene linker exhibited a higher open-circuit voltage (0.699 V) compared to thiophene and furan linker. Among all dyes, CSG2 containing a thiophene linker exhibited the maximum overall conversion efficiency of 3.8% (JSC = 8.90 mA cm−2, VOC = 584 mV, FF = 0.74) under standard global AM 1.5 G solar condition. Under similar fabrication conditions, champion dye N719 exhibited the maximum overall conversion efficiency of 6.4% (JSC = 14.74 mA cm2, VOC = 606 mV, FF = 0.716).  相似文献   

9.
Two molecules denoted as VC96 and VC97 have been synthesized for efficient (η = 6.13% @ 100 mW/cm2 sun-simulated light) small molecule solution processed organic solar cells. These molecules have been designed with the D1-A-D2-A-D1 structure bearing different central donor unit, same benzothiadiazole (BT) as π-acceptor and end capping triphenylamine. Moreover, the optical and electrochemical properties (both experimental and theoretical) of these molecules have been systematically investigated. The solar cells prepared from VC96:PC71BM and VC97:PC71BM (1:2) processed from CF (chloroform) exhibit a PCE (power conversion efficiency) of η = 4.06% (Jsc = 8.36 mA/cm2, Voc = 0.90 V and FF = 0.54) and η = 3.12% (Jsc = 6.78 mA/cm2, Voc = 0.92 V and FF = 0.50), respectively. The higher PCE of the device with VC96 as compared to VC97 is demonstrated to be due to the higher hole mobility and broader IPCE spectra. The devices based on VC96:PC71BM and VC97:PC71BM processed with solvent additive (3 v% DIO, 1,8-diiodooctane) showed PCE of η = 5.44% and η = 4.72%, respectively. The PCE device of optimized VC96:PC71BM processed with DIO/CF (thermal annealed) has been improved up to 6.13% (Jsc = 10.72 mA/cm2, Voc = 0.88 V and FF = 0.61). The device optimization results from the improvement of the balanced charge transport and better nanoscale morphology induced by the solvent additive plus the thermal annealing.  相似文献   

10.
In this study, the annealing effect on structural, electrical and optical properties of CuIn2n+1S3n+2 thin films (n=0, 1, 2 and 3) are investigated. CuIn2n+1S3n+2 films were elaborated by vacuum thermal evaporation and annealed at 150 and 250 °C during 2 h in air atmosphere. XRD data analysis shows that CuInS2 and CuIn3S5 (n=0 and 1) crystallize in the chalcopyrite structure according to a preferential direction (112), CuIn5S8 and CuIn7S11 (n=2 and 3) crystallize in the cubic spinel structure with a preferential direction (311). The optical characterization allowed us to determine the optical constants (refractive indexes 2.2–3.1, optical thicknesses 250–500 nm, coefficients of absorption 105 cm?1, coefficients of extinction <1, and the values of the optical transitions 1.80–2.22 eV) of the samples of all materials. We exploited the models of Cauchy, Wemple–DiDomenico and Spitzer–Fan for the analysis of the dispersion of the refractive index and the determination of the optical and dielectric constants.  相似文献   

11.
Novel Ni0.5Zn0.5Fe2O4 (NiZn-ferrite)/Polyaniline (PANI) nanocomposites with NiZn ferrite nanoparticles on the surface of PANI nanofibers were successfully prepared by hydrothermal method. The composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), and UV–vis spectra. The results indicate that the PANI nanofibers (80 nm in thickness) are attached by NiZn ferrite nanoparticles. Compared with pure PANI, the thermal stability of composites is improved clearly. The NiZn-ferrite/PANI nanocomposites exhibit ferromagnetic behavior with high saturation magnetization (Ms=43.7 emu/g) and coercivity (Hc=138.7 Oe) at room temperature. The microwave absorption properties of these composites were measured, and the absorption bandwidth with reflection loss below ?10 dB is up to 5 GHz. The composites could further extend the potential application in microwave absorption and electromagnetic interference shielding fields.  相似文献   

12.
ZnO and Fe2O3 nanoparticles have been formed in a silica matrix, through the sol–gel method and were used as a photoanode to fabricate dye-sensitized solar cells (DSCs). The obtained oxides were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscope and UV–visible absorption spectroscopy. The results indicate that ZnO and Fe2O3 prepared by this method may be used as photoanodes in photo-electro-chemical energy conversion systems. DSSCs have been built using eosin Y as photosensitizer and their photocurrent, open-circuit voltage, fill factor and efficiency have been measured under direct sunlight illumination (1000 Wcm?2). A ZnO-film solar cell had the best performance with an open-circuit voltage of Voc=0.7 V and short-circuit current density of Isc=490 μA/cm2. This was attributed to high optical gap energy and transparency of ZnO compared to Fe2O3. The effects of annealing temperature and concentration of Fe2O3 on conversion efficiency of the Fe2O3 based solar cell were also studied.  相似文献   

13.
In this report, we explore the optoelectronic properties of a low band-gap copolymer based on the alternation of electron rich (thiophene and thienothiophene units) and electron deficient units (pyridal[2,1,3]thiadiazole (Py)). Initial density functional theory calculations point out the interest of using the Py unit to optimize the polymer frontier orbital energy levels. A high molecular weight (Mn = 49 kg/mol) solution-processable copolymer, based on Py, thiophene and thienothiophene units, has been synthesized successfully. From cyclic-voltammetry and UV–visible absorption measurements a relatively deep HOMO level (−5.1 eV) and an optical band-gap (1.48 eV) have been estimated. Charge transport both in horizontal and vertical directions were extracted from field-effect transistors and space charge limited current diodes, respectively, and led to a relatively high in-plane hole mobility in pure polymer films (0.7 × 10−2 cm2 V−1 s−1). GIWAXS results showed almost identical in-plane lamellar morphologies, with similar average size and orientation of the polymer crystalline domains in both, pure polymer films and polymer:fullerene blends. Also, the gate-voltage dependence of the field-effect mobility revealed that the energy disorder in the polymer domains was not altered by the introduction of fullerenes. The nevertheless significantly higher out-of-plane hole mobility in blends, in comparison to pure polymer films, was attributed to the minor amorphous polymer phase, presumably localized close to the donor/acceptor interface, whose signature was observed by UV–vis absorption. Promising photovoltaic performances could be achieved in a standard device configuration. The corresponding power conversion efficiency of 4.5% is above the value achieved previously with a comparable polymer using benzo [2,1,3]thiadiazole instead of Py as acceptor unit.  相似文献   

14.
《Organic Electronics》2014,15(7):1536-1544
New D–A–π–A carbazole dyes containing benzothiadiazole chromophores were designed and synthesized for application in dye-sensitized solar cells (DSSCs). The light-harvesting capabilities and photovoltaic performance of these dyes were investigated systematically through comparison of different π-bridges and acceptors. Compared with thiophene bridge, benzene bridge provides improved IPCE and VOC, which leads to better photoelectricity conversion efficiency. Dyes with cyanoacetic acid acceptor display superior photovoltaic properties though with shorter absorption maximum and lower molar absorption coefficient compared with dyes with rhodanine acetic acid acceptor. Therefore, dye with benzene bridge and cyanoacetic acid acceptor shows the most efficient photoelectricity conversion efficiency and has the maximum η value of 5.40% (VOC = 710 mV, JSC = 10.99 mA/cm2, and ff = 0.71) under simulated AM 1.5 irradiation (100 mW/cm2).  相似文献   

15.
In the paper, SnOx thin films were deposited by reactive magnetron sputtering from a tin target in O2 containing working gas. The evolution from Sn-containing SnO to tetravalent SnO2 films was investigated. The films could be classified into three groups according to their optical band gaps, which are Eg<2.5 eV, Eg=3.0–3.3 eV and Eg>3.7 eV. The electric measurements show that high conductivity can be obtained much easier in SnO2 than in SnO films. A high electron mobility of 15.7 cm2 V−1 s−1, a carrier concentration of 1.43×1020 cm−3 and a resistivity of 2.8×103 Ω cm have been achieved in amorphous SnO2 films. Films with the optical band gap of 3.0–3.3 eV remain amorphous though the substrate temperature is as high as 300 °C, which implies that °btaining high mobility in p-type SnO is more challenging in contrast to n-type SnO2 films.  相似文献   

16.
This paper reports polymer solar cells with a 7% power conversion efficiency (PCE) based on bulk heterojunction (BHJ) composites of the alternating co-polymer, poly[N-9′′-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole) (PCDTBT), and the fullerene derivative [6,6]-phenyl C71-butyric acid methyl ester (PC71BM). As confirmed by transmission electron microscopy, solvent–vapor annealing (SVA) of the thin (70 nm) BHJ photoactive layer by exposure to chloroform vapor, for a short period of time (30 s) after deposition, leads to reconstructed nanoscale morphology of donor/acceptor domains, well-dispersed fullerene phase and effective photo-absorption of BHJ. Consequently, SVA-reconstructed devices with a PCDTBT:PC71BM blend ratio of 1:5 (wt%) exhibit ~50% improvement in PCE, with short-circuit current Jsc = 15.65 mA/cm2, open-circuit voltage Voc = 0.87 V, and PCE = 7.03%, in comparison to those of the 1:4 (wt%) blends with SVA treatment.  相似文献   

17.
《Organic Electronics》2014,15(7):1678-1686
A high efficient UV–violet emission type material bis[4-(9,9′-spirobifluorene-2-yl)phenyl] sulfone (SF-DPSO) has been synthesized by incorporating electron deficient sulfone and morphologically stable spirobifluorene into one molecule. The steric and bulky compound SF-DPSO exhibits an excellent solid state photoluminescence quantum yield (ΦPL = 92%), high glass transition temperature (Tg = 211 °C) and high triplet energy (ET = 2.85 eV). In addition, the uniform amorphous thin film could be formed by spin-coating from its solution. These promising physical properties of the material made it suitable for using as UV–violet emitter in non-doped device and appropriate host in phosphorescent OLEDs. With SF-DPSO as an emitter, the non-doped solution processed device achieved an efficient UV–violet emission with the EL peak around 400 nm. By using SF-DPSO as a host, solution processed blue and green phosphorescent organic light emitting diodes showed a high luminous efficiency of 13.7 and 30.2 cd A−1, respectively.  相似文献   

18.
《Organic Electronics》2014,15(7):1324-1337
A tertiary arylamine compound (DC), which contains a terminal cyano-acetic group in one of its aryl groups, and an unsymmetrical porphyrin dyad of the type Zn[Porph]-L-H2[Porph] (ZnP-H2P), where Zn[Porph] and H2[Porph] are metallated and free-base porphyrin units, respectively, and L is a bridging triazine group functionalized with a glycine moiety, and were synthesized and used for the fabrication of co-sensitized dye-sensitized solar cells (DSSCs). The photophysical and electronic properties of the two compounds revealed spectral absorption features and frontier orbital energy levels that are appropriate for use in DSSCs. Following a stepwise co-sensitization procedure, by immersing the TiO2 electrode in separate solutions of the dyes in different sequence, two co-sensitized solar cells were obtained: devices C (ZnP-H2P/DC) and D (DC/ZnP-H2P).The two solar cells were found to exhibit power conversion efficiencies (PCEs) of 6.16% and 4.80%, respectively. The higher PCE value of device C, which is also higher than that of the individually sensitized devices based on the ZnP-H2P and DC dyes, is attributed to enhanced photovoltaic parameters, i.e. short circuit current (Jsc = 11.72 mA/cm2), open circuit voltage (Voc = 0.72 V), fill factor (FF = 0.73), as it is revealed by photovoltaic measurements (JV curves) and by incident photon to current conversion efficiency (IPCE) spectra of the devices, and to a higher total dye loading. The overall performance of device C was further improved up to 7.68% (with Jsc = 13.45 mA/cm2, Voc = 0.76 V, and FF = 0.75), when a formic acid treated TiO2 ZnP-H2P co-sensitized photoanode was employed (device E). The increased PCE value of device E has been attributed to an enhanced Jsc value (=13.45 mA/cm2), which resulted from an increased dye loading, and an enhanced Voc value (=0.76 V), attributed to an upward shift and increased of electron density in the TiO2 CB. Furthermore, dark current and electrochemical impedance spectra (EIS) of device E revealed an enhanced electron transport rate in the formic acid treated TiO2 photoanode, suppressed electron recombination at the photoanode/dye/electrolyte interface, as well as shorter electron transport time (τd), and longer electron lifetime (τe).  相似文献   

19.
《Organic Electronics》2014,15(9):2079-2090
A series of novel 2,6-conjugated Bodipy metal-free organic dyes (UY58) with phenothiazine (PTZ) moiety as electron donor for the dye-sensitized solar cells (DSSCs) have been designed and synthesized. The optical, electrochemical properties and photovoltaic performances are extensively investigated. The structure–property relationship shows that the introduction of various auxiliary conjugated spacers and anchoring groups are favorable to changing the efficiency of DSSCs. Among these dyes, UY7 comprised of furan with lower resonance energy as linker and cyanoacetic acid unit as electron acceptor possesses a flatter structure and longer electron recombination lifetime. Hence, a DSSCs using UY7 showing best photovoltaic performance with a short-circuit photocurrent density (Jsc) of 13.64 mA cm2, an open-circuit photovoltage (Voc) of 590 mV and a fill factor (ff) of 0.66, corresponding to an overall conversion efficiency (η) of 5.31% under 100 mW cm2 simulated AM 1.5 G solar irradiation. This is the best reported result in the solar cell with a Bodipy dye as photosensitizer.  相似文献   

20.
《Optical Fiber Technology》2014,20(4):409-413
We report fabrication of a highly nonlinear hybrid microstructured optical fiber composed of chalcogenide glass core and tellurite glass cladding. The flattened chromatic dispersion can be achieved in such an optical fiber with near zero dispersion wavelength at telecommunication wavelengths λ = 1.35–1.7 μm, which cannot be achieved in chalcogenide glass optical fibers due to their high refractive index, i.e. n > 2.1. We demonstrate a hybrid 4-air hole chalcogenide–tellurite optical fiber (Δn = 0.25) with flattened chromatic dispersion around λ = 1.55 μm. In optimized 12-air hole optical fiber composed of the same glasses, the chromatic dispersion values were achieved between −20 and 32 ps/nm/km in a broad wavelength range of 1.5–3.8 μm providing the fiber with extremely high nonlinear coefficient 86,000 km−1W−1. Hybrid chalcogenide/tellurite fibers pumped with the near infrared lasers give good promise for broadband optical amplification, wavelength conversion, and supercontinuum generation in the near- to mid-infrared region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号