首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用超声波萃取法从29种天然植物中提取染料, 测试天然染料的紫外-可见光(UV-vis)吸收光谱,探讨天然染料所 含的色素种类。采用水热法制备了TiO2薄膜电极,用所提取的29种天然染料敏化TiO2光 电极并将其组装成染料敏化太阳电池(DSSCs)。测试天然染料敏化的DSSCs 的光电性能结果显示,天然染料敏化的DSSCs的开路 电压Voc为0.46~0.64 V,短路电流Isc为0.07~3.61mA· cm-2,其中山竹皮敏 化的DSSCs光电性能最佳,对应的Isc和光电转换 效率η分 别为3.61mA·cm-2和2.13%。从天然 染料中挑选出7种不同吸收波段色素的染料进行协同敏化,UV-vis吸收光谱测试结 果显示混合染料的吸收峰一般有微小偏移。光电性能测试结果表明,协同敏化后的DSSCs的 性能一般都介于天然染料单独敏 化的两个DSSCs的性能之间,其中山竹皮和芥蓝协同敏化的DSSCs的η最高,为1.70%。对实验结果进行深入分析,探讨提高天然染料 敏化的DSSCs光电性能的途径。  相似文献   

2.
Photovoltaic performance of cross‐linkable Ru(2,2′‐bipyridine‐4,4′‐bicarboxylic acid)(4,4′‐bis((4‐vinyl benzyloxy)methyl)‐2,2′‐bipyridine)(NCS)2 (denoted as RuS dye) adsorbing on TiO2 mesoporous film was enhanced by polymerizing with either ionic liquid monomer, 1‐(2‐acryloyloxy‐ethyl)‐3‐methyl‐imidazol‐1‐ium iodide (AMImI), to form RuS‐cross‐AMImI or di‐functional acrylic monomer with ether linkage, triethyleneglycodimethacrylate (TGDMA), to form RuS‐cross‐TGDMA. Their cross‐linking properties were investigated by UV–vis spectroscopy by rinsing with 0.1 N NaOH aqueous solution. The power conversion efficiencies (PCEs) of dye‐sensitized solar cells (DSSCs) with RuS‐cross‐AMImI and RuS‐cross‐TGDMA both reached over 8% under standard global air mass 1.5 full sunlight. The increased PCE for DSSCs with RuS‐cross‐AMImI comparing with cross‐linked RuS was attributed to the I counterion of AMImI increasing the charge regeneration rate of RuS dye, whereas that with RuS‐cross‐TGDMA was attributed to the Li+ coordination property of TGDMA. The photovoltaic performance of RuS‐cross‐TGDMA was also slightly better than that of RuS‐cross‐AMImI because of higher open‐circuit photovoltage (Voc) and short‐circuit photocurrent (Jsc). Its higher Voc was supported by the Bode plot of impedance under illumination and Nyquist plots at dark, whereas higher Jsc was supported by the incident monochromatic photon‐to‐current conversion efficiency spectra and charge extraction experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Photovoltaic performance of dye sensitized solar cell (DSSC) with absorber layer of TiO2 nanotube (NT)/TiO2 nanoparticles (NPs)/ZnO NPs was investigated. Fabricated DSSC exhibits enhanced open circuit voltage, current density and power conversion efficiency compared with DSSC having absorber layer of TiO2 NT/ TiO2 NPs and TiO2 NT/ZnO NPs. To further explore the dynamics of charge transport and recombination processes, electrochemical impedance analysis, intensity modulated photovoltage spectroscopy and photocurrent spectroscopy were carried out on the fabricated DSSCs. It was found that an optimal combination of TiO2/ZnO NPs on top of TiO2 NTs reduces the electron recombination and improves transport pathways, resulting in an efficient charge collection of 99%.  相似文献   

4.
A new pyrrole-based conjugated oligomer (P1) was obtained with phenyl-linked triphenylamine moieties as an isolation group. Little aggregations were observed whether oligomer P1 was absorbed on titanium dioxide (TiO2) surface or in solid state. Since the pyrrole-based moieties in donor-π-acceptor type was the core component ofoligomer P1 for light absorption, the corresponding dyesensitized solar cell (DSSC) demonstrated the efficiency of light-to-electrical conversion by 0.48%. Higher conversion efficiency could be achieved by tuning the size of the isolation groups and the structure of the donor-π-acceptor type dyes.  相似文献   

5.
《Organic Electronics》2014,15(6):1205-1214
A series of metal free organic sensitizers have been designed and their optoelectronic properties for DSSC applications have been systematically investigated using density functional theory (DFT) and time dependent density functional theory (TD-DFT) methods. The role of donor/acceptor monomers on the electron donating/withdrawing abilities has been discussed and promising donor–acceptor combinations are screened. Based on this screening, some of novel metal free sensitizers have been designed and their electronic and spectral properties have been investigated using DFT/TDDFT methods. Our results show that the designed molecules are promising candidates to provide good performances as sensitizers in the DSSC applications.  相似文献   

6.
Novel ruthenium (II) phenanthroline complex, RuII(4,4′,4″-tri-tert-butyl-2,2′:6′,2″-terpyridine)-(4,7-diphenyl-1,10-phenanthroline-disulfonic acid disodium salt)(thiocyanate), [Ru(L1)(L2)(NCS)], [K328] was designed and synthesized as a photosensitizer for the dye sensitized solar cells (DSSCs) using TiO2 and ZnO electrodes. The density functional theory (DFT) calculation was used to estimate the photovoltaic properties of the complex in the design stage. In this paper, our aim was to investigate the interaction between semiconductor and anchoring groups like sulfonate group that binds onto TiO2 and ZnO surface. The influence of the semiconductor type on the performance of TiO2 and ZnO based photovoltaics has been tested. The solar cell performance of TiO2 based solar cell shows better efficiencies compared to ZnO based solar cell. Although sulfonate group did offer stronger binding onto the semiconductor surface, this does not help to improve cell performance for ZnO based solar cells.  相似文献   

7.
用CzHQZn作为受主,利用磷光敏化的方法制备了有机电致黄光和白光器件。黄光器件采用Ir(ppy)3掺杂4,4-N,N′-=咔唑基联苯(CBP),敏化新的黄光材料CzHQZn作为发光层,当发光层厚度为18nm时器件性能最好,最大发光效率为3.26cd/A(at10V),最大发光亮度为17560cd/m2(at10V);白光器件采用多发光层结构,结合ADN的蓝光复合发光,同时加入了电子阻挡层(NPBX)和空穴阻挡层(BCP),获得的白光器件最大发光效率为2.94cd/A(at8V),最大亮度为11089cd/m2(at13V)。  相似文献   

8.
This paper reports a comparative study of the photovoltaic characteristics of titanium (Ti) metal wires with different diameter and surface treatments towards their utilization as photoanodes for coil-based dye-sensitized solar cells. The surface property of the Ti wire, especially oxidized overlayer and surface treatments have been found to greatly influence the adhesion as well as optimum electrical contact between coated nanoporous titanium oxide (TiO2) and Ti-wires. Implication of adhesion of nanoporous TiO2 on the titanium wire and its influence on photovoltaic performance was analyzed using electrochemical impedance spectroscopy. Results of X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy reveals the formation of anatase TiO2 nanosheets after the H2O2 surface treatment on the titanium wire resulting into enhancement in the extent of dye loading leading to enhanced photoconversion efficiency of 4.71% under simulated solar irradiation.  相似文献   

9.
We demonstrate that a crystalline pentacene molecular templating layer considerably changes the morphology of the subsequently deposited lead phthalocyanine (PbPc) layer, resulting in an improved crystallinity at the early stages of growth of the PbPc film and a higher content of the triclinic phase. For bilayer PbPc (20 nm)/C60 (40 nm) organic solar cells with or without the pentacene templating layer, the use of the pentacene templating layer leads to a 48% enhancement in the short-circuit current without noticeably affecting the solar cell open-circuit voltage or fill factor. A copper or zinc phthalocyanine molecular templating layer also leads to enhanced photovoltaic response from the PbPc/C60 cells, though less significant than the pentacene template. The improved device performance originates from stronger absorption by the triclinic PbPc phase in the near infrared and the enhanced internal quantum efficiency over the entire spectrum where PbPc absorbs.  相似文献   

10.
Carbon material was produced from the graphitization of glucose at high temperature in flowing argon. The produced carbon material was characterized using Scanning electron microscopy, Transmission electron microscopy, Raman spectroscopy and XRD. Carbon slurry of the produced carbon was made in ethanol by using polyvinylpyrrolidone (PVP) as surfactant. Carbon slurry was coated homogeneously on fluorine doped tin oxide (FTO) glass by a doctor blade technique and applied as counter electrode for dye synthesized solar cell. The current density (J) and open circuit voltage (VOC) of fabricated cell was 8.30 mA cm−2 and 0.77 V respectively. The efficiency of the cell was 3.63%, which is comparable to 5.82% of cell with platinum counter electrode under the same experimental conditions.  相似文献   

11.
采用聚氧化乙烯(PEO)作为聚合物太阳能电池的阴极修饰层,以P3HT:PCBM为活性层制备了聚合物本体异质结太阳能电池。考察了PEO的厚度对器件光伏性能及稳定性的影响。比较了加入PEO修饰层前后器件的稳定性,研究了采用PEO修饰层前后器件电阻的差异。结果表明:加入PEO作为阴极修饰层后器件的光电性能(JSC,VOC,FF,PCE)均有明显提高,而器件的串联电阻Rs则有了明显降低。没有阴极修饰层的器件的初始光电转换效率为1.92%,90 h后衰减为初始值的5%;而加入PEO修饰层后初始光电转换效率为3.36%,90 h后仅衰减为初始值的20%,光电转换效率提高了75%,稳定性提高了3倍。  相似文献   

12.
The interdigitated design for donor–acceptor in solar cell has been studied in some detail, but the optimum size and shape leading to direct enhancement in nanopore (or nanopillar) structure is still not well understood. Here, we demonstrate a modeling method to forecast the optimum size and shape for poly(3-hexylthiophene) (P3HT) nanopores in interdigitated P3HT: [6, 6]-phenyl C61 butyric acid methyl ester (PCBM) photovoltaic device, based on experimental results of P3HT:PCBM bilayer solar cell. In our analysis, the energy generated at unit nanopore is supposed to the same as the one generated at infinite point of P3HT:PCBM bilayer solar cell with variable layer thickness. A definitive function in terms of a radius of unit nanopore with various shapes is established, substituting a regression function derived from the results of power conversion efficiency in bilayer solar cell. Interpreting the function, we finally showed that the effective radius for P3HT nanopores with rectangular or cylinder, cut-cone, cone shape should be less than 135, 53, 2 nm respectively.  相似文献   

13.
《Organic Electronics》2014,15(2):378-390
The asymmetric nature of pyridal[2,1,3]thiadiazole (PyT), allows the synthesis of two isomers, series SC-PyTNn (n = 1–4) and SC-NPyTn (n = 1–6), where the nitrogen atom of PyT is positioned closer to the arylamine donor and the anchoring group, respectively. PyT derivatives have significant bathochromic shift of the electronic absorption compared to their 2,1,3-benzothiadiazole congeners. The short-circuit photocurrent density, open-circuit voltage and fill factor of DSSCs using the dyes as the sensitizers are in the range of 0.68–9.47 mA/cm−2, 0.43–0.61 V and 0.59–0.72, respectively. SC-NPyTn (n = 1–6) exhibited higher cell efficiencies than SC-PyTNn (n = 1–4). Power conversion efficiency of up to 4.24% was observed for SC-NPyT3.  相似文献   

14.
Ternary blend solar cells have been intensively studied in recent years to harvest more photons over the near-IR region. In this work, the effects of adding a diketopyrrolopyrrole dye (py-DPP) into a conventional P3HT:PC71BM based bulk heterojunction photovoltaic cell are investigated. The near infrared absorption of the blend is enhanced by the doped py-DPP dye, leading to more than 20% increased power conversion efficiency compared to the P3HT:PC71BM binary system. The highest efficiency of 4.05% is achieved for a P3HT:PC71BM blend with 2.4 wt % of py-DPP.  相似文献   

15.
As poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b; 4,5-b′]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)] has good potential as a low-band gap donor polymer for organic photovoltaic cells (OPVs), we investigated the optimized electrospray deposition condition for realizing suitable polymer ordering and/or crystallite size by controlling the solvent evaporation time. Previous studies on the electrospray process have mainly focused on novel device structure owing to its unique characteristic of small droplet size, which is less than 1 μm. However, in this research, we investigated the spontaneous formation of interpenetrating continuous networks of the donor- and acceptor-rich domains of solvent evaporation during the electrospray process. By evaluating the ultraviolet–visible absorption spectrum, Raman spectroscopy, and direction of polymer ordering, it was shown that the polymer-stacking condition was not influenced by solvent evaporation time, even though poly(3-hexylthiophene-2,5-diyl) along the face-on direction was well stacked under the slow solvent evaporation condition. In contrast, the crystallite size, which was estimated from the full width at half maximum X-ray diffraction pattern, increased as the solvent evaporation time increased. This means that the crystalline grain spontaneously grew in the droplet and that the large crystalline grain was formed during the slow evaporation condition. Furthermore, the photovoltaic performance trend was the same as the performance trend of the crystallite size and were increased with increasing solvent evaporation time for both polymers. Therefore, the crystalline grain size was a dominant factor in determining the photovoltaic performance. Additionally, the crystalline grain size could be controlled by the solvent evaporation time. Finally, by optimizing the active-layer thickness, the highest photoconversion efficiency of 8.6% was achieved. This is the highest value of an electrospray-based device. These results indicate that the solvent evaporation time is an important factor in determining the crystallite size of an organic thin film, which directly affects the photoconversion efficiency of OPVs.  相似文献   

16.
This paper proposes the use of undoped hydrogenated microcrystalline silicon oxide (μc-SiOx:H) deposited on the n-μc-Si:H layer of amorphous silicon single-junction superstrate configuration thin-film solar cells produced through 40 MHz very high frequency plasma-enhanced chemical vapor deposition. Raman spectroscopy and optoelectronic analyses of the undoped μc-SiOx:H thin film revealed that adding a small amount of oxygen into a μc-network results in a low optical absorption, wide band gap, high optical band gap E04, high refractive index, reasonable conductivity, and crystalline volume fraction, which are advantageous properties in solar cells. Compared with a standard cell, the current density–voltage (J–V) characteristics of the cell with an undoped μc-SiOx:H/n-μc-Si:H structure showed an enhancement in short-circuit current density Jsc from 13.32 to 13.60 mA/cm2, and in conversion efficiency from 8.53% to 8.61%. The increased Jsc mechanism can be attributed to an improved light-trapping capability in the long wavelength range between 510 and 660 nm, as demonstrated by the external quantum efficiency.  相似文献   

17.
Tetra-nuclear Zinc(II) complex Zn4O(AID)6 [AID = 7-azaindolate] is a wide band gap luminescent material that exhibits efficient emission matching the absorption spectra of organic donor materials such as polythiophene (P3HT). This work demonstrates polymer solar cells (PSC) based on P3HT:PCBM (phenyl-C61-butyric acid methyl ester) blend active layer with a Zn4O(AID)6 cathode interfacial layer achieving a power conversion efficiency (PCE) significantly higher than that of the reference devices. The energy level and impedance spectroscopy analysis show that the Zn4O(AID)6 cathode interfacial layer acts as an efficient exciton/hole blocking layer, and reduces charge recombination rate with more efficient electron extraction. The Zn4O(AID)6 interfacial layer also helps achieve longer lifetime of PSC devices. The improved efficiency and stability combined with low cost and nontoxicity of Zn4O(AID)6 make it a promising cathode interfacial material for high-performance and stable PSC devices.  相似文献   

18.
The packing effects induced by the hydrophilic ethylene glycol oligomer side chains occurred in a P3HT:PC61BM mixture upon the addition of small amounts of BP93 (containing 7 mol% PEGT blocks), leading to an enhanced crystallinity among the P3HT molecules, even in a P3HT:PC61BM blend. The enhanced crystallinity improved the charge transport and current density (8.3–11.1 mA/cm2) and increased the power conversion efficiency (3.1–3.9%) in an organic solar cell.  相似文献   

19.
多孔ZnO纳米花电子传输层对有机太阳能电池性能的优化   总被引:1,自引:1,他引:0  
通过水热法制备了多孔、单晶结构的三维ZnO纳米花材料。研究了不同生长时间下(6h、9h和12h)的ZnO材料的形貌及光电性能。结果表明,反应9h的多孔ZnO纳米花材料具有较高透光率、低缺陷密度以及高载流子迁移率等优点,是较为理想的电子传输层材料。将这些材料应用于有机太阳能电池的制备,性能测试结果表明,以生长时间为9h的多孔ZnO纳米花材料作为电子传输层的器件性能最佳,与无ZnO修饰层的参比器件相比,其短路电流密度Jsc和光电转化效率(PCE)明显提高,分别达到了5.68mA/cm2和1.24%。  相似文献   

20.
In this work, we compare the effects of sorbitol derivatives (1,3:2,4-dibenzylidene sorbitol (DBS), 1,3:2,4-di(p-methylbenzylidene) sorbitol (MDBS) and 1,3:2,4-di(3,4-dimethylbenzylidene) sorbitol (DMDBS)) on the performances of poly(3-octyl thiophene)/[6,6]-phenyl C61-butyric acid methyl ester (P3OT/PCBM) bulk heterojunction (BHJ) organic photovoltaic (OPV) devices and explore the mechanism. Differential scanning calorimetry (DSC) and atomic force microscopy (AFM) measurements indicate that DBS, MDBS and DMDBS are nucleating agents of P3OT. DMDBS has the strongest molecular polarizability and exhibits the best propensity for self-assembly in 1,2-dichlorobenzene (ODCB). The strong π-π stacking of aromatic benzylidene group and the high density of the fibrillary aggregates supply more nucleation surfaces for P3OT, leading DMDBS has the highest nucleation efficiency (NE). Sorbitol derivatives accelerate the crystallization rate (G) of P3OT with the order as GP3OT/DMDBS > GP3OT/MDBS > GP3OT/DBS > GP3OT. The acceleration of the crystallization increases the number of tie molecules, causing the improvement of the connectivity between ordered regions, resulting dramatically increasing the carrier transport of P3OT. GP3OT/DMDBS is highest, the connectivity between ordered regions is best in P3OT with DMDBS. UV–vis measurement indicates that the intra-chain order of P3OT reduces with the addition of sorbitol derivative, and the intra-chain order of P3OT with DMDBS is lowest. The P3OT/PCBM/sorbitol derivative BHJ OPV devices were fabricated and show that the short circuit current JSC P3OT/DMDBS > JSC P3OT/MDBS > JSC P3OT/DBS > JSC P3OT. It hints that the connectivity of tie molecules plays a significant role in defining semiconducting polymer transport characteristics, and is perhaps more important than molecular level interactions (inter- and intra-chain order) for efficient macroscopic charge carrier transport. Finally, it shows that adding sorbitol derivatives can improve the power conversion efficiency (PCE) of P3OT/PCBM BHJ OPV device, the best PCE as 1.77% is obtained in the P3OT/PCBM/DMDBS device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号