首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了改善无线多跳网络的性能,很多研究表明跨层协议设计比OSI模型更适合无线网络。本文分析了无线多跳网络的特征及对各协议层的影响,给出了跨层协议设计对网络性能的改善以及它可能带来的问题,并针对速率自适应MAC协议和网络层路由协议之间的相互影响给出了仿真实例,结果证明跨层协议设计要充分考虑不同协议之间的相互影响,合理规划、谨慎实施,否则网络的性能不升反降。  相似文献   

2.
柯炜  殷奎喜 《电信快报》2005,(10):40-43
下一代无线通信系统必须能够与互联网实现信息交互,这就需要利用通信协议来实现系统与其他通信系统间的互连互通。但是,现有通信协议基于OSI标准,其协议栈按照严格的分层方式工作,很难适应快速变化的无线通信环境。通过对现有协议栈进行改进,加入跨层设计方案则有助于改善下一代无线系统性能。文章简要分析了分层协议栈局限性,讨论了跨层设计原理,并系统地阐述了跨层设计时物理层、链路层、网络层、传输层和应用层协议应考虑的因素。  相似文献   

3.
Mobility support in wireless Internet   总被引:7,自引:0,他引:7  
The tremendous advancement and popularity of wireless access technologies necessitates the convergence of multimedia (audio, video, and text) services on a unified global (seamless) network infrastructure. Circuit-switched proprietary telecommunication networks are evolving toward more cost-effective and uniform packet-switched networks such as those based on IP. However, one of the key challenges for the deployment of such wireless Internet infrastructure is to efficiently manage user mobility. To provide seamless services to mobile users, several protocols have been proposed over the years targeting different layers in the network protocol stack. In this article we present a cross-layer perspective on the mobility protocols by identifying the key features of their design principles and performance issues. An analysis of the signaling overhead and handoff delay for some representative protocols in each layer is also presented. Our conclusion is that although the application layer protocol is worse than the protocols operating in the lower layers, in terms of handoff delay and signaling overhead, it is better suited as a potential mobility solution for the next-generation heterogeneous networks, if we consider such factors as protocol stack modification, infrastructure change, and inherent operational complexity.  相似文献   

4.
SMORT: Scalable multipath on-demand routing for mobile ad hoc networks   总被引:3,自引:0,他引:3  
L.  S.V.   《Ad hoc Networks》2007,5(2):162-188
Increasing popularity and availability of portable wireless devices, which constitute mobile ad hoc networks, calls for scalable ad hoc routing protocols. On-demand routing protocols adapt well with dynamic topologies of ad hoc networks, because of their lower control overhead and quick response to route breaks. But, as the size of the network increases, these protocols cease to perform due to large routing overhead generated while repairing route breaks. We propose a multipath on-demand routing protocol (SMORT), which reduces the routing overhead incurred in recovering from route breaks, by using secondary paths. SMORT computes fail-safe multiple paths, which provide all the intermediate nodes on the primary path with multiple routes (if exists) to destination. Exhaustive simulations using GloMoSim with large networks (2000 nodes) confirm that SMORT is scalable, and performs better even at higher mobility and traffic loads, when compared to the disjoint multipath routing protocol (DMRP) and ad hoc on-demand distance vector (AODV) routing protocol.  相似文献   

5.
Cross-layer congestion control in ad hoc wireless networks   总被引:2,自引:0,他引:2  
Dzmitry  Fabrizio   《Ad hoc Networks》2006,4(6):687-708
The paper presents the problem of performance degradation of transport layer protocols due to congestion of wireless local area networks. Following the analysis of available solutions to this problem, a cross-layer congestion avoidance scheme (C3TCP) is presented, able to obtain higher performance by gathering capacity information such as bandwidth and delay at the link layer. The method requires the introduction of an additional module within the protocol stack of the mobile node, able to adjust the outgoing data stream based on capacity measurements. Moreover, a proposal to provide optional field support to existing IEEE 802.11 protocol, in order to support the presented congestion control solution as well as many other similar approaches, is presented. Achieved results underline good agreement with design considerations and high utilization of the available resources.  相似文献   

6.
A Cross-Layer Architecture of Wireless Sensor Networks for Target Tracking   总被引:1,自引:0,他引:1  
We propose the Low Energy Self-Organizing Protocol (LESOP) for target tracking in dense wireless sensor networks. A cross-layer design perspective is adopted in LESOP for high protocol efficiency, where direct interactions between the Application layer and the Medium Access Control (MAC) layer are exploited. Unlike the classical Open Systems Interconnect (OSI) paradigm of communication networks, the Transport and Network layers are excluded in LESOP to simplify the protocol stack. A lightweight yet efficient target localization algorithm is proposed and implemented, and a Quality of Service (QoS) knob is found to control the tradeoff between the tracking error and the network energy consumption. Furthermore, LESOP serves as the first example in demonstrating the migration from the OSI paradigm to the Embedded Wireless Interconnect (EWI) architecture platform, a two-layer efficient architecture proposed here for wireless sensor networks  相似文献   

7.
无线Mesh网络(WMN:wireless mesh networks)作为一种新型的无线网络,成为近几年研究的热点。由于无线信道不稳定等特性,如何设计WMN的路由协议成为决定其性能的关键因素之一。近几年来的研究表明,通过跨层设计的方式综合其他层的重要参数来实现路由选择,能够很好地解决这一难题。介绍了几种先进的跨层路由设计方案,总结了现有的跨层路由协议的优缺点,并对如何设计并实现跨层路由协议进行了分析和总结。  相似文献   

8.
Mobile multimedia applications have recently generated much interest in mobile ad hoc networks (MANETs) supporting quality-of-service (QoS) communications. Multiple non-interfering channels are available in 802.11 and 802.15 based wireless networks. Capacity of such channels can be combined to achieve higher QoS performance than for single channel networks. The capacity of MANETs can be substantially increased by equipping each network node with multiple interfaces that can operate on multiple non-overlapping channels. However, new scheduling, channel assignment, and routing protocols are required to utilize the increased bandwidth in multichannel MANETs. In this paper, we propose an on-demand routing protocol M-QoS-AODV in multichannel MANETs that incorporates a distributed channel assignment scheme and routing discovery process to support multimedia communication and to satisfy QoS bandwidth requirement. The proposed channel assignment scheme can efficiently express the channel usage and interference information within a certain range, which reduces interference and enhances channel reuse rate. This cross-layer design approach can significantly improve the performance of multichannel MANETs over existing routing algorithms. Simulation results show that the proposed M-QoS-AODV protocol can effectively increase throughput and reduce delay, as compared to AODV and M-AODV-R protocols.  相似文献   

9.
PACMAN: passive autoconfiguration for mobile ad hoc networks   总被引:4,自引:0,他引:4  
Mobile ad hoc networks (MANETs) enable the communication between mobile nodes via multihop wireless routes without depending on a communication infrastructure. In contrast to infrastructure-based networks, MANET's support autonomous and spontaneous networking and, thus, should be capable of self-organization and -configuration. This paper presents passive autoconfiguration for mobile ad hoc network (PACMAN), a novel approach for the efficient distributed address autoconfiguration of mobile ad hoc networks. Special features of PACMAN are the support for frequent network partitioning and merging, and very low protocol overhead. This is accomplished by using cross-layer information derived from ongoing routing protocol traffic, e.g., address conflicts are detected in a passive manner based on anomalies in routing protocol traffic. Furthermore, PACMAN assigns Internet protocol (IP) addresses in a way that enables their compression, which can significantly reduce the routing protocol overhead. The performance of PACMAN is analyzed in detail based on various simulation results.  相似文献   

10.
Exploiting path diversity in the link layer in wireless ad hoc networks   总被引:1,自引:0,他引:1  
Shweta  Samir R. 《Ad hoc Networks》2008,6(5):805-825
We develop an anycast mechanism at the link layer for wireless ad hoc networks. The goal is to exploit path diversity in the link layer by choosing the best next hop to forward packets when multiple next hop choices are available. Such choices can come from a multipath routing protocol, for example. This technique can reduce transmission retries and packet drop probabilities in the face of channel fading. We develop an anycast extension of the IEEE 802.11 MAC layer based on this idea. We implement the protocol in an experimental proof-of-concept testbed using the Berkeley motes platform and S-MAC protocol stack. We also implement it in the popular ns-2 simulator and experiment with the AOMDV multipath routing protocol and Ricean fading channels. We show that anycast performs significantly better than 802.11 in terms of packet delivery, particularly when the path length or effect of fading is large. Further we experiment with anycast in networks that use multiple channels and those that use directional antennas for transmission. In these networks, deafness and hidden terminal problems are the main source of packet loss. We implemented anycast as extension of 802.11 like protocols that were proposed for these special networks. We are able to show that anycast is capable of enhancing the performance of these protocols by simply making use of the path diversity whenever it is available.  相似文献   

11.
Active routing for ad hoc networks   总被引:1,自引:0,他引:1  
Ad hoc networks are wireless multihop networks whose highly volatile topology makes the design and operation of a standard routing protocol hard. With an active networking approach, one can define and deploy routing logic at runtime in order to adapt to special circumstances and requirements. We have implemented several active ad hoc routing protocols that configure the forwarding behavior of mobile nodes, allowing data packets to be efficiently routed between any two nodes of the wireless network. Isolating a simple forwarding layer in terms of both implementation and performance enables us to stream delay-sensitive audio data over the ad hoc network. In the control plane, active packets permanently monitor the connectivity and setup, and modify the routing state  相似文献   

12.
We consider a wireless sensor network with energy constraints. We model the energy consumption in the transmitter circuit along with that for data transmission. We model the bottom three layers of the traditional networking stack - the link layer, the medium access control (MAC) layer, and the routing layer. Using these models, we consider the optimization of transmission schemes to maximize the network lifetime. We first consider the optimization of a single layer at a time, while keeping the other layers fixed. We make certain simplifying assumptions to decouple the layers and formulate optimization problems to compute a strategy that maximizes the network lifetime. We then extend this approach to cross-layer optimization of time division multiple access (TDMA) wireless sensor networks. In this case, we construct optimization problems to compute the optimal transmission schemes to an arbitrary degree of accuracy and efficiently. We then consider networks with interference, and propose methods to compute approximate solutions to the resulting optimization problems. We give numerical examples that illustrate the computational approaches as well as the benefits of cross-layer design in wireless sensor networks.  相似文献   

13.
Wu  Jingbang  Lu  Huimei  Xiang  Yong  Cai  Bingying  Wang  Weitao  Liu  Ruilin 《Wireless Personal Communications》2017,97(4):5597-5619

Non-uniform node densities occur and intermittent links exist in highly dynamic ad hoc networks. To fit these networks, researchers usually combine delay tolerant network (DTN) routing protocols and mobile ad hoc network (MANET) routing protocols. The DTN protocol separates end-to-end links into multiple DTN links, which consist of multi-hop MANET links. Determining how to arrange DTN links and MANET links from source to end and dealing with intermittent links are performance issues, because node density ranges from sparse to dense and MANET protocols are much lighter than DTN protocols. This paper presents HMDTN, an application-network cross-layer framework, to solve the previously mentioned issues. The application layer in HMDTN supports disrupt tolerance with a large data buffer while adjusting the routing table on the basis of the connection state of links (link is disrupted or recovered), which are collected by the network layer. As a result, HMDTN increases the bandwidth utilization of intermittent links without compromising the efficiency of the MANET protocol in a reliable network. The HMDTN prototype was implemented based on Bytewalla (a Java version of DTN2) and Netfilter-based AODV. Experiments on Android devices show that unlike AODV and Epidemic, HMDTN increases the bandwidth utilization of intermittent links with a negligible increase of network overhead. In particular, HMDTN maintains the network throughput as high as regular network conditions even if the network undergoes relatively long-term (dozens of seconds or few minutes) data link disruptions.

  相似文献   

14.
With respect to the inherent advantages of multipath routing, nowadays multipath routing is known as an efficient mechanism to provide even network resource utilization and efficient data transmission in different networks. In this context, several multipath routing protocols have been developed over the past years. However, due to the time-varying characteristics of low-power wireless communications and broadcast nature of radio channel, performance benefits of traffic distribution over multiple paths in wireless sensor networks are less obvious. Motivated by the drawbacks of the existing multipath routing protocols, this paper presents an Interference-Minimized MultiPath Routing protocol (IM2PR) which aims to discover a sufficient number of minimum interfering paths with high data transmission quality between each event area and sink node in order to provide efficient event data packet forwarding in event-driven wireless sensor networks. Extensive performance evaluations show that IM2PR presents improvements over the Micro Sensor Multipath Routing Protocol and Energy-Efficient data Routing Protocol as follows: 50 and 70 % in term of packet reception ratio at the sink, 44 and 80 % in term of goodput, 33 and 40 % in term of packet delivery latency, 40 and 57 % in term of energy consumption, 50 and 60 % in term of packet delivery overhead.  相似文献   

15.
有损低功耗网络路由协议(Routing Protocol for Lossy and Low-power Networks,RPL)是为解决在无线传感网中无线传感节点受限而被提出,现有的实现是基于Contiki和Tiny操作系统,并不能应用在基于有线自治网络的自治控制平面(Autonomic Control Plane,ACP)中。为了对ACP提供可靠的通信支撑,设计和实现了基于ACP的RPL路由协议软件。协议软件主要由通信模块、消息处理模块、路由构造模块以及路由维护模块组成。其中,针对协议的实现是基于Linux操作系统根据ACP标准使用C语言进行开发。测试结果表明,实现的RPL协议能够支持ACP中正常的通信功能。  相似文献   

16.
Scheduling algorithms play an important role for TDMA-based wireless sensor networks. Existing TDMA scheduling algorithms address a multitude of objectives. However, their adaptation to the dynamics of a realistic wireless sensor network has not been investigated in a satisfactory manner. This is a key issue considering the challenges within industrial applications for wireless sensor networks, given the time-constraints and harsh environments. In response to those challenges, we present SAS-TDMA, a source-aware scheduling algorithm. It is a cross-layer solution which adapts itself to network dynamics. It realizes a trade-off between scheduling length and its configurational overhead incurred by rapid responses to routes changes. We implemented a TDMA stack instead of the default CSMA stack and introduced a cross-layer for scheduling in TOSSIM, the TinyOS simulator. Numerical results show that SAS-TDMA improves the quality of service for the entire network. It achieves significant improvements for realistic dynamic wireless sensor networks when compared to existing scheduling algorithms with the aim to minimize latency for real-time communication.  相似文献   

17.
Mobile ad hoc networks (MANETs) are characterized by multiple entities, a frequently changing network topology and the need for efficient dynamic routing protocols. In MANETs, nodes are usually powered by batteries. Power control is tightly coupled with both the physical and medium access layers (MACs). However, if we increase the transmission power, at the same time we increase the interference to other nodes which diminish the transport capacity of wireless systems. Thus, the routing protocols based on hop count metric suffer from performance degradation when they operate over MANET. Routing in ad hoc wireless networks is not only a problem of finding a route with shortest length, but it is also a problem of finding a stable and good quality communication route in order to avoid any unnecessary packet loss. Cross-layer design of ad hoc wireless networks has been receiving increasing attention recently. Part of these researches suggests that routing should take into account physical layer characteristics. The goal of this paper is to improve the routing reliability in MANET and to reduce power consumption through cross-layer approach among physical, MAC and network layers. The proposed cross-layer approach is based on signal to interference plus noise ratio (SINR) and received signal strength indication (RSSI) coming from the physical layer. This solution performs in one hand the ad hoc on-demand distance vector routing protocol by choosing reliable routes with less interferences using SINR metric and in another hand; it permits to reduce the power transmission when sending the data packets by using RSSI metric.  相似文献   

18.
Hybrid wireless mesh networks are the most generic types of wireless mesh networks. Unlike static mesh routers, which have multiple radio interfaces and almost no energy constraint, mobile mesh clients are usually equipped with a single radio interface and have energy limitations. A cooperative hybrid routing protocol (CHRP) combining advantages of proactive and reactive routing protocols by letting them work cooperatively is proposed in this paper, which can adapt to features of both routers and clients. In CHRP, in order to make a proper route selection, channel condition, interference and constrained energy of clients are considered in the node-aware routing metric. Besides, a cross-layer approach is used in CHRP. Both gateway and client oriented data flows are considered comprehensively. The simulation results using ns-3 show the advantage of the proposed CHRP in terms of average packet loss rate, average latency, average network throughput, average energy consumption of clients and the minimum residual energy of clients.  相似文献   

19.
We introduce AsyMAC, a MAC layer protocol for wireless networks with asymmetric links and study a protocol stack consisting of AsyMAC and the A4LP routing protocol. The two protocols are able to maintain connectivity where the standard IEEE 802.11 MAC protocol coupled with either AODV or OLSR routing protocols may loose connectivity. A comparative study shows that AsyMAC improves on two previously proposed protocols’ accuracy in determining the nodes to be silenced to prevent collisions.  相似文献   

20.
It is commonly held that next generation mobile systems will be developed on the Internet in combination with diverse access technologies, as the future network architecture will be the coming together of various overlapping wireless access networks. Integrating various wireless networks in future heterogeneous networking environments poses many difficulties, the most critical challenge of which is efficient support for seamless mobility. SIP is a promising nominee for managing mobility in heterogeneous networks as it provides mobility within the application layer and the characteristics of the lower layer protocols are invisible to it. However, the performance of SIP-based mobility management is downgraded, resulting from its adoption of TCP/UDP for signaling and its strict separation between the lower layers and the application layer of the protocol stack. In this paper, a SIP-based cross-layer design for fast handoffs is proposed to shorten the service interruption time when a mobile node crosses the overlapped area of a WLAN/3G cellular system. As will be shown by the simulation results, the SIP-based solution proposed in this paper effectively lessens the handoff delays caused by either the horizontal handoff or vertical handoff in future all-IP heterogeneous wireless networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号