首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Solution based inverted Organic Photovoltaic (OPVs) usually use Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) derivatives combined with pristine processing additives as hole selective contact on top of the hydrophobic conjugated polymer:fullerene active layer. In this study, PEDOT:PSS based hole selective contact is treated with two different boiling point additives, 2,5,8,11-tetramethyl-6-dodecyn-5,8-diol ethoxylate (Dynol) and Zonyl FS-300 fluorosurfactant (Zonyl). Although corresponding inverted OPVs using the above PEDOT:PSS:Additives show similar power conversion efficiency (PCE) values, the mechanisms of their implementation on inverted OPV operation are not identical. By understanding the synergistic effects of PEDOT:PSS processing additives on the hole selectivity of inverted OPVs we demonstrate a novel combination of PEDOT:PSS additives mixture as an effective route to further increase the hole selectivity, reliability andpower conversion efficiency of inverted OPVs.  相似文献   

2.
Isopropanol (IPA)-treated poly(3,4-ethylenedioxithiophene):poly(styrene sulfonate) (PEDOT:PSS) was applied as a new electron transport layer (ETL) in P3HT:PCBM bulk heterojunction polymer solar cell (BHJ-PSC) devices for the first time, revealing the electron transport property of IPA-treated PEDOT:PSS in sharp contrast to the well known hole transport property of the untreated PEDOT:PSS. Under the optimized condition for incorporating PEDOT:PSS ETL, the power conversion efficiency (PCE) of the ITO/untreated PEDOT:PSS (HTL)/P3HT:PCBM/IPA-treated PEDOT:PSS (ETL)/Al device (3.09%) is quite comparable to that of the reference ITO/untreated PEDOT:PSS (HTL)/P3HT:PCBM/Al device without any ETL (3.06%), and an annealing treatment of PEDOT:PSS ETL at 120 °C for 10 min led to a PCE of 3.25%, which even slightly surpasses that of the reference device, revealing the electron transport property of IPA-treated PEDOT:PSS. The electron transport property of IPA-treated PEDOT:PSS is interpreted by the lowering of the work function of PEDOT:PSS upon IPA treatment and incorporation as ETL as probed by scanning Kelvin probe microscopy (SKPM).  相似文献   

3.
All-solution processed organic solar cells with inverted device architecture were demonstrated. Devices contain opaque bottom electrodes and semitransparent top electrodes, resulting in top illuminated devices. Nanoparticles-based Ag ink was used for inkjet printing both top and bottom electrodes. Semi-transparent top electrode consists of high conductivity PEDOT:PSS and Ag current collecting grids. Printed electrodes were compared to evaporated Ag electrodes (both top and bottom) and to ITO electrode in terms of transmittance, roughness, sheet resistance and device performance. All-solution processed devices with top illumination have average PCE of 2.4%, using P3HT:PCBM as photoactive layer. Top-illuminated devices with inverted architecture and bottom-illuminated device with conventional architecture, containing the identical layers, but in the reverse sequence, were then compared. Performed studies have revealed an advantage of inverted cell architecture.  相似文献   

4.
Tungsten oxide layer is formed uniformly by a sol–gel technique on top of indium tin oxide as a neutral and photo-stable hole extraction layer (HEL). The solution processed tungsten oxide layer (sWO3) is fully characterized by UV–Vis, XPS, UPS, XRD, AFM, and TEM. Optical transmission of ITO/sWO3 substrates is nearly identical to ITOs. In addition, the sWO3 layer induces nearly ohmic contact to P3HT as PEDOT:PSS layer does, which is determined by UPS measurement. In case that an optimized thickness (~10 nm) of the sWO3 layer is incorporated in the organic photovoltaic devices (OPVs) with a structure of ITO/sWO3/P3HT:PCBM/Al, the power conversion efficiency (PCE) is 3.4%, comparable to that of devices utilizing PEDOT:PSS as HEL. Furthermore, the stability of OPV utilizing sWO3 is significantly enhanced due to the air- and photo-stability of the sWO3 layer itself. PCEs are decreased to 40% and 0% of initial values, when PEDOT:PSS layers are exposed to air and light for 192 h, respectively. In contrast, PCEs are maintained to 90% and 87% of initial PCEs respectively, when sWO3 layers are exposed to the same conditions. Conclusively, we find that solution processed tungsten oxide layers can be prepared easily, act as an efficient hole extraction layer, and afford a much higher stability than PEDOT:PSS layers.  相似文献   

5.
We report on the adhesion of weak interfaces in inverted P3HT:PCBM-based polymer solar cells (OPV) with either a conductive polymer, PEDOT:PSS, or a metal oxide, molybdenum trioxide (MoO3), as the hole transport layer. The PEDOT:PSS OPVs were prepared by spin or spray coating on glass substrates, or slot-die coating on flexible PET substrates. In all cases, we observed adhesive failure at the interface between the P3HT:PCBM with PEDOT:PSS layer. The adhesion energy measured for the solar cells made on glass substrates was about 1.8 J/m2, but only 0.5 J/m2 for the roll-to-roll processed flexible solar cells. The adhesion energy was insensitive to the PEDOT:PSS layer thickness in the range of 10–40 nm. A marginal increase in adhesion energy was measured with increased O2 plasma power. Compared to solution processed PEDOT:PSS, we found that thermally evaporated MoO3 adheres less to the P3HT:PCBM layer, which we attributed to the reduced mixing at the MoO3/P3HT:PCBM interface during the thermal evaporation process. Insights into the mechanisms of delamination and the effect of different material properties and processing parameters yield general guidelines for the design of more reliable organic photovoltaic devices.  相似文献   

6.
为研究超薄PCBM层对有机太阳电池的影响,制备了含和不含超薄PCBM层的两种不同结构的体相异质结太阳电池,电池结构分别为:ITO/PEDOT:PSS/P3HT+PCBM/PCBM/AI,ITO/PEDOT:PSS/P3HT+PCBM/Al.测试结果表明:所制备电池的开路电压分别为0.599 2V和0.572 7 V,能量转换效率分别为2.24%、1.21%,超薄PCBM层起到了电子传输的作用.  相似文献   

7.
This work demonstrates the stability and degradation of OSCs based on poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′ benzothiadiazole)] (PCDTBT): (6,6)-Phenyl C71 butyric acid methyl ester (PC71BM) photoactive blend layers as a function of ageing time in air. Analysis of the stability and degradation process for the OSCs was conducted under ambient air by using current-voltage (I-V) measurements and x-ray photoelectron spectroscopy (XPS). The interface between photoactive layer and HTL (PEDOT:PSS) was also investigated. Device stability was investigated by calculating decay in power conversion efficiency (PCE) as a function of ageing time in the air. The PCE of devices decrease from 5.17 to 3.61% in one week of fabrication, which is attributed to indium and oxygen migration into the PEDOT:PSS and PCDTBT:PC71BM layer. Further, after aging for 1000 h, XPS spectra confirm the significant diffusion of oxygen into the HTL and photoactive layer which increased from 3.0 and 23.3% to 20.4 and 35.7% in photoactive layer and HTL, respectively. Similarly, the indium content reached to 17.9% on PEDOT:PSS surface and 0.4% on PCDTBT:PC71BM surface in 1000 h. Core-level spectra of active layer indicate the oxidation of carbon atoms in the fullerene cage, oxidation of nitrogen present in the polymer matrix and formation of In2O3 due to indium diffusion. We also observed a steady fall in the optical absorption of the active layer during ageing in ambient air and it reduced to 76.5% of initial value in 1000 h. On the basis of these experimental results, we discussed key parameters that account for the degradation process and stability of OSCs in order to improve the device performance.  相似文献   

8.
《Organic Electronics》2014,15(9):2059-2067
Polymer solar cells (PSCs) are of great interest in the past decade owing to their potentially low-cost in the manufacturing by the solution-based roll to roll method. In this paper, a novel inverted device structure was introduced by inserting a high conductive PEDOT:PSS (hcPEDOT:PSS) layer between the Au nanoparticles (NPs)-embedded hole transport layer (PEDOT:PSS) and the top electrode layer. Power conversion efficiency (PCE) initially reached up to 4.51%, illustrating ∼10% higher compared with the device similarly enhanced by Au NPs plasmonics where only one PEDOT:PSS layer with the embedded Au NPs was used in single bulk heterojunction inverted PSCs based on the poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methylester (P3HT:PCBM). The PCE was further improved from 4.51% to 5.01% by adding the high-boiling point solvent of 1,8-diiodooctane (DD) into the active layer, presenting ∼20% enhancement in PCE through dual effects of introducing the high boiling point solvent and the high conductive PEDOT:PSS layer. Morphologies of the active layers were characterised by SEM and AFM separately in the paper.  相似文献   

9.
In this study, monolayer hexagonal boron nitride (h-BN) grown via chemical vapor deposition (CVD) as an effective electron blocking layer (EBL) for the organic photovoltaics (OPVs) is proposed. Unexpectedly, it is found that h-BN can replace the commonly used hole transport layers (HTLs), i.e., molybdenum trioxide (MoO3) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) in an inverted device architecture. Here, a wet-transfer technique is employed and a single layer of h-BN on top of the PV2000:PC60BM blend is successfully placed. Analysis of the bandgap diagram shows that the monolayer h-BN makes smaller barrier for holes but significantly larger barrier for electrons. This makes the h-BN effective in blocking electrons while creating a possible path for the holes through tunneling to the electrode, due to the low energy barrier at the PV2000/h-BN interface. Using h-BN as an EBL, efficient inverted OPVs are achieved with an average solar-to-power conversion efficiency of 6.13%, which is comparable with that of reference devices based on MoO3 (7.3%) and PEDOT:PSS (7.6%) as HTLs. Interestingly, the devices with h-BN shows great light-soak stability. The study reveals that the monolayer h-BN grown by CVD could be an effective alternative EBL for the fabrication of efficient, lightweight, and stable OPVs.  相似文献   

10.
In this paper,bulk heterojunction solar cells with poly-(3-hexylthiophene)(P3HT):[6,6]-phenyl-C61-butyric-acid-methylester(PCBM) as an active layer and modified poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) as a buffer layer are fabricated.The buffer layer is modified by adding 1% to 5% dimethyl sulfoxide(DMSO) into PEDOT:PSS solution before spin-coating.The conductivity of modified PEDOT:PSS and the performance of solar cells with modified PEDOT:PSS are measured.The highest conductivity of modified PEDOT:PSS with 4% DMSO can achieve 89.693 S/cm.The performance of organic solar cell with PEDOT:PSS modified by 4% DMSO is the best.The 4% DMSOmodified-PEDOT:PSS cell has a power conversion efficiency of 3.34%,V oc of 5.7 V,J sc of 14.56 mA/cm 2 and filling factor(FF) of 40.34%.  相似文献   

11.
Bulk‐heterojunction photovoltaic cells consisting of a photoactive layer of poly[2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐1,4‐phenylenevinylene] (MDMO‐PPV) and a C60 derivative, (1‐(3‐methoxycarbonyl)propyl‐1‐phenyl‐[6,6]‐methanofullerene), (PCBM), sandwiched between an indium tin oxide (ITO) anode covered with poly(ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), and an aluminum cathode have been analyzed using transmission electron microscopy (TEM) and cryogenic Rutherford backscattering spectrometry (RBS) to assess the structural and elemental composition of these devices. TEM of cross sections of fully processed photovoltaic cells, prepared using a focused ion beam, provide a clear view of the individual layers and their interfaces. RBS shows that during preparation diffusion of indium into the PEDOT:PSS occurs while the diffusion of aluminum into the polymer layers is negligible. An iodinated C60 derivative (I‐PCBM) was used to determine the concentration profile of this derivative in the vertical direction of a 100 nm active layer.  相似文献   

12.
The directional dependence of electron blocking by poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is investigated in organic photovoltaic devices. In a conventional OPV architecture we find that a doped interlayer forms between poly(3-hexylthiophene) (P3HT) and the PSS-rich top layer of spin-coated PEDOT:PSS films. In an inverted OPV architecture, we find no mixing between PEDOT:PSS and P3HT, which is due to the lower concentration of PSS in bulk PEDOT:PSS than is found in the PSS-rich top layer. Through electrical measurements of conventional and inverted photovoltaic devices we show that the interlayer is necessary for PEDOT:PSS to be electron blocking. This result implies that PEDOT:PSS is not intrinsically electron blocking and that its directional anisotropy must be considered when comparing the advantages and disadvantages of conventional and inverted architecture photovoltaic devices.  相似文献   

13.
The effects of metal chlorides such as LiCl, NaCl, CdCl2 and CuCl2 on optical transmittance, electrical conductivity as well as morphology of PEDOT:PSS films have been investigated. Transmittance spectra of spun PEDOT:PSS layers were improved by more than 6% to a maximum of 94% in LiCl doped PEDOT:PSS film. The surface of the PEDOT:PSS films has exhibited higher roughness associated with an increase in the electrical conductivity after doping with metal salts. The improvement in the physical properties of PEDOT:PSS as the hole transport layer proved to be key factors towards enhancing the P3HT:PCBM bulk heterojunction (BHJ) solar cells. These improvements include significantly improved power conversion efficiency with values as high as 6.82% associated with high fill factor (61%) and larger short circuit current density (∼18 mA cm−2).  相似文献   

14.
Inkjet and transfer printing processes are combined to easily form patterned poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films as top anodes of all solution–processed inverted polymer light emitting diodes (PLEDs) on rigid glass and flexible plastic substrates. An adhesive PEDOT:PSS ink is formulated and fully customizable patterns are obtained using the inkjet printing process. In order to transfer the patterned PEDOT:PSS films, adhesion properties at interfaces during multistep transfer printing processes are carefully adjusted. The transferred PEDOT:PSS film on the plastic substrates shows not only a sheet resistance of 260.6 Ω/□ and a transmittance of 92.1% at 550 nm wavelength but also excellent mechanical flexibility. The PLEDs with spin‐coated functional layers sandwiched between the transferred PEDOT:PSS top anodes and inkjet‐printed Ag bottom cathodes are fabricated. The fabricated PLEDs on the plastic substrates show a high current efficiency of 10.4 cd A?1 and high mechanical stability. It is noted that because both Ag and PEDOT:PSS electrodes can be patterned with a high degree of freedom via the inkjet printing process, highly customizable PLEDs with various pattern sizes and shapes are demonstrated on the glass and plastic substrates. Finally, with all solution process, a 5 × 7 passive matrix PLED array is demonstrated.  相似文献   

15.
In this article, we have demonstrated solar cell performance of the inkjet-printed PEDOT:PSS layer and the roles of additives in device efficiency. The newly proposed PEDOT:PSS inks with additives of glycerol and surfactant show the improved surface morphology and high conductivity resulting in the enhanced photovoltaic performance. Using the optimized ink formulation of PEDOT:PSS, we have demonstrated a 3.16% efficient solar cell with an inkjet printing.  相似文献   

16.
We use a low vacuum plasma assisted physical vapour deposition (PAPVD) method to deposit a Au nanoparticles (NPs) thin film onto the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer in inverted poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methylester (P3HT:PCBM) organic photovoltaic (OPV) devices. The Au NPs that incorporated into the PEDOT:PSS layer and reached to the active P3HT:PCBM layer can provide significant plasmonic broadband light absorption enhancement to the active layer. An approximately 50–90% improvement in short-circuit current density and in power convention efficiency has been achieved compared with those OPV devices without the plasmonic light absorption enhancement. This technique can be adopted and easily fit into most OPV device fabrication processes without changing other layers’ processing methods, morphologies, and properties.  相似文献   

17.
A thin poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) hole transport layer enhances the AM1.5 power conversion efficiency of a PbSe quantum dot (QD)–containing photovoltaic device to 2.4%, from 1.5% for a standard PbSe QD device, a relative increase of 60%. Synchrotron X‐ray reflectivity measurements reveal that the roughness of the interfaces between the various layers decreases dramatically in the presence of the PEDOT:PSS layer. In addition, the device life time under continuous simulated AM1.5 irradiation (100 mW cm?2), measured in terms of the time required to reach 80% of the normalized efficiency, for the PbSe QD device incorporating the PEDOT:PSS hole transport layer is six times longer than that of the standard PbSe QD device.  相似文献   

18.
The effects of anode/active layer interface modification in bulk‐heterojunction organic photovoltaic (OPV) cells is investigated using poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and/or a hole‐transporting/electron‐blocking blend of 4,4′‐bis[(p‐trichlorosilylpropylphenyl)‐phenylamino]biphenyl (TPDSi2) and poly[9,9‐dioctylfluorene‐coN‐[4‐(3‐methylpropyl)]‐diphenylamine] (TFB) as interfacial layers (IFLs). Current–voltage data in the dark and AM1.5G light show that the TPDSi2:TFB IFL yields MDMO‐PPV:PCBM OPVs with substantially increased open‐circuit voltage (Voc), power conversion efficiency, and thermal stability versus devices having no IFL or PEDOT:PSS. Using PEDOT:PSS and TPDSi2:TFB together in the same cell greatly reduces dark current and produces the highest Voc (0.91 V) by combining the electron‐blocking effects of both layers. ITO anode pre‐treatment was investigated by X‐ray photoelectron spectroscopy to understand why oxygen plasma, UV ozone, and solvent cleaning markedly affect cell response in combination with each IFL. O2 plasma and UV ozone treatment most effectively clean the ITO surface and are found most effective in preparing the surface for PEDOT:PSS deposition; UV ozone produces optimum solar cells with the TPDSi2:TFB IFL. Solvent cleaning leaves significant residual carbon contamination on the ITO and is best followed by O2 plasma or UV ozone treatment.  相似文献   

19.
A new solution processable small molecule (DPP-CN) containing electron donor diketopyrrolopyrrole (DPP) core and cyanovinylene 4-nitrophenyl (CN) electron acceptor has synthesized for use as the donor material in the bulk heterojunction organic solar cells along with PCBM, modified PCBM i.e. F and A as electron acceptor. It showed a broad absorption in longer wavelength region having optical band gap around 1.64 eV. We have used PCBM, F and A as electron acceptor for the fabrication of bulk heterojunction photovoltaic devices. The power conversion efficiency (PCE) of the BHJ devices based on DPP-CN:PCBM, DPP-CN:F and DPP-CN:A blends cast from the THF solvent is 1.83%, 2.79% and 2.83%, respectively. The increase in the PCE based on F and A as electron acceptor is mainly due to the increase in both short circuit current (Jsc) and open circuit voltage (Voc). The PCE value of the photovoltaic devices based on the blends DPP-CN:PCBM, DPP-CN:F and DDP-CN:A cast from the mixed solvents (DIO/THF) has been further improved up to 2.40%, 3.32% and 3.34%, respectively. This improvement is mainly due to the increased value of Jsc, which is attributed not only to the increase of crystallinity, but also to the morphological change in the film cast from mixed solvent. Finally, the device ITO/PEDOT:PSS/DPP-CN:A (DIO/THF cast)/TiO2/Al device shows a PCE of 3.9%. The improved device performance could be attributed to the electron transporting and hole-blocking capabilities due to the introduced TiO2 buffer layer.  相似文献   

20.
The use of vapor phase polymerized poly(3,4‐ethylenedioxythiophene) (VPP‐PEDOT) as a metal‐replacement top anode for inverted solar cells is reported. Devices with both i) standard bulk heterojunction blends of poly(3‐hexylthiophene) (P3HT) donor and 1‐(3‐methoxycarbonyl)‐propyl‐1‐phenyl‐(6,6)C60 (PCBM) soluble fullerene acceptor and ii) hybrid inorganic/organic TiO2/P3HT acceptor/donor active layers are studied. Stamp transfer printing methods are used to deposit both the VPP‐PEDOT top anode and a work function enhancing PEDOT:polystyrenesulphonate (PEDOT:PSS) interlayer. The metal‐free devices perform comparably to conventional devices with an evaporated metal top anode, yielding power conversion efficiencies of 3% for bulk heterojunction blend and 0.6% for organic/inorganic hybrid structures. These encouraging results suggest that stamp transfer printed VPP‐PEDOT provides a useful addition to the electrode materials tool‐box available for low temperature and non‐vacuum solar cell fabrication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号