首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Change point detection algorithms have numerous applications in areas of medical condition monitoring, fault detection in industrial processes, human activity analysis, climate change detection, and speech recognition. We consider the problem of change point detection on compositional multivariate data (each sample is a probability mass function), which is a practically important sub-class of general multivariate data. While the problem of change-point detection is well studied in univariate setting, and there are few viable implementations for a general multivariate data, the existing methods do not perform well on compositional data. In this paper, we propose a parametric approach for change point detection in compositional data. Moreover, using simple transformations on data, we extend our approach to handle any general multivariate data. Experimentally, we show that our method performs significantly better on compositional data and is competitive on general data compared to the available state of the art implementations.

  相似文献   

2.
We consider simulation methods for particular marked multivariate point processes, calledR-processes, which have recently been proposed as models for multiprogrammed jobstreams. Using workload marks on events, such models facilitate the incorporation of realistic workload characteristics into computer system performance predictions. We consider R-processes in which workload marks for an individual jobstream form a stationary sequence of discrete random variables having a (generally non-Markovian) mixed moving average-autoregressive dependency structure. For such models we provide a method for obtaining from a single simulation run point and interval estimates for general characteristics of job response times.  相似文献   

3.
In manufacturing industries, it is well known that process variation is a major source of poor quality products. As such, monitoring and diagnosis of variation is essential towards continuous quality improvement. This becomes more challenging when involving two correlated variables (bivariate), whereby selection of statistical process control (SPC) scheme becomes more critical. Nevertheless, the existing traditional SPC schemes for bivariate quality control (BQC) were mainly designed for rapid detection of unnatural variation with limited capability in avoiding false alarm, that is, imbalanced monitoring performance. Another issue is the difficulty in identifying the source of unnatural variation, that is, lack of diagnosis, especially when dealing with small shifts. In this research, a scheme to address balanced monitoring and accurate diagnosis was investigated. Design consideration involved extensive simulation experiments to select input representation based on raw data and statistical features, artificial neural network recognizer design based on synergistic model, and monitoring–diagnosis approach based on two-stage technique. The study focused on bivariate process for cross correlation function, ρ = 0.1–0.9 and mean shifts, μ = ±0.75–3.00 standard deviations. The proposed two-stage intelligent monitoring scheme (2S-IMS) gave superior performance, namely, average run length, ARL1 = 3.18–16.75 (for out-of-control process), ARL0 = 335.01–543.93 (for in-control process) and recognition accuracy, RA = 89.5–98.5%. This scheme was validated in manufacturing of audio video device component. This research has provided a new perspective in realizing balanced monitoring and accurate diagnosis in BQC.  相似文献   

4.
Neural Computing and Applications - The massive growth of process data in industrial systems has promoted the development of data-driven techniques, while the presence of outliers in process data...  相似文献   

5.
6.
One issue in the dynamic simulation of flexible multibody system is poor computation efficiency, which is due to high frequency components in the solution associated with a deformable body. Standard explicit numerical methods should take very small time steps in order to satisfy the absolute stability condition for the high frequency components and, in turn, the computational efficiency deteriorates. In this study, a hybrid integration scheme is applied to solve the equations of motion of a flexible multibody system for achieving better computational efficiency. The computation times and simulation results are compared between the hybrid scheme and conventional methods. The results demonstrate that the efficiency of a flexible multibody simulation can be improved by using the hybrid scheme.  相似文献   

7.
This paper investigates how to adapt a discrepancy-based search method to solve two-stage hybrid flowshop scheduling problems in which each stage consists of several identical machines operating in parallel. The objective is to determine a schedule that minimizes the makespan. We present an adaptation of the Climbing Depth-bounded Discrepancy Search (CDDS) method based on Johnson’s rule and on dedicated lower bounds for the two-stage hybrid flow shop problem. We report the results of extensive computational experiments, which show that the proposed adaptation of the CDDS method solves instances in restrained CPU time and with high quality of makespan.  相似文献   

8.
In this work conditions for the two-stage Rosenbrock system parameters with third-order accuracy for the differential-algebraic systems of index 1 have been obtained. The coefficients of the system are complex numbers. A new system with L2 stability has been constructed with third-order accuracy for differential-algebraic systems and with fourth-order accuracy for differential systems. The convergence of this scheme is proved. This scheme was tested on standard stiff tests and compared with the already known schemes of the same class.  相似文献   

9.
In this article, the monitoring of continuous processes using linear dynamic models is presented. It is outlined that dynamic extensions to conventional multivariate statistical process control (MSPC) models may lead to the inclusion of large numbers of variables in the condition monitor. To prevent this, a new dynamic monitoring scheme, based on subspace identification, is introduced, which can (1) determine a set of state variables for describing process dynamics, (2) produce a reduced set of variables to monitor process performance and (3) offer contribution charts to diagnose anomalous behaviour. This is demonstrated by an application study to a realistic simulation of a chemical process.  相似文献   

10.
This paper deals with a problem of finding valid solutions to systems of polynomial constraints. Although there have been several quite successful algorithms based on domain subdivision to resolve this problem, some major issues are still demanding further research. Prime obstacles in developing an efficient subdivision-based polynomial constraint solver are the exhaustive, although hierarchical, search of the zero-set in the parameter domain, which is computationally demanding, and their scalability in terms of the number of variables. In this paper, we present a hybrid parallel algorithm for solving systems of multivariate constraints by exploiting both the CPU and the GPU multicore architectures. We dedicate the CPU for the traversal of the subdivision tree and the GPU for the multivariate polynomial subdivision. By decomposing the constraint solving technique into two different components, hierarchy traversal and polynomial subdivision, each of which is more suitable to CPUs and GPUs, respectively, our solver can fully exploit the availability of hybrid, multicore architectures of CPUs and GPUs. Furthermore, our GPU-based subdivision method takes advantage of the inherent parallelism in the multivariate polynomial subdivision. We demonstrate the efficacy and scalability of the proposed parallel solver through several examples in geometric applications, including Hausdorff distance queries, contact point computations, surface–surface intersections, ray trap constructions, and bisector surface computations. In our experiments, the proposed parallel method achieves up to two orders of magnitude improvement in performance compared to the state-of-the-art subdivision-based CPU solver.  相似文献   

11.
Computational Visual Media - The concept of using multiple deep images, under a variety of different names, has been explored as a possible acceleration approach for finding ray-geometry...  相似文献   

12.
Time series analysis and multivariate control charts are used to devise a real-time monitoring strategy in a drilling process. The process is used to produce holes with high length-to-diameter ratio, good surface finish and straightness. It is subject to dynamic disturbances that are classified as either chatter vibration or spiralling. A new nonparametric control chart for multivariate processes is proposed. It is used to detect chatter vibration which is dominated by single frequencies. The results showed that the proposed monitoring strategy can detect chatter vibration and that some alarm signals are related to changing physical conditions of the process.  相似文献   

13.
With the aim to improve the steel rolling process performance, this research presents a novel hybrid system for selecting the best parameters for tuning in open loop a PID controller. The novel hybrid system combines rule based system and Artificial Neural Networks. With the rule based system, it is modeled the existing knowledge of the PID controller tuning in open loop and, with Artificial Neural Network, it is completed the rule based model that allow to choose the optimal parameters for the controller. This hybrid model is tested with a long dataset to obtain the best fitness. Finally, the novel research is validated on a real steeling roll process applying the hybrid model to tune a PID controller which set the input speed in each of the gearboxes of the process.  相似文献   

14.
This paper proposes a two-stage system for text detection in video images. In the first stage, text lines are detected based on the edge map of the image leading in a high recall rate with low computational time expenses. In the second stage, the result is refined using a sliding window and an SVM classifier trained on features obtained by a new Local Binary Pattern-based operator (eLBP) that describes the local edge distribution. The whole algorithm is used in a multiresolution fashion enabling detection of characters for a broad size range. Experimental results, based on a new evaluation methodology, show the promising overall performance of the system on a challenging corpus, and prove the superior discriminating ability of the proposed feature set against the best features reported in the literature.  相似文献   

15.
Advanced automatic data acquisition is now widely adopted in manufacturing industries and it is common to monitor several correlated quality variables simultaneously. Most of multivariate quality control charts are effective in detecting out-of-control signals based upon an overall statistics in multivariate manufacturing processes. The main problem of such charts is that they can detect an out-of-control event but do not directly determine which variable or group of variables has caused the out-of-control signal and what is the magnitude of out of control. This study presents a hybrid learning-based model for on-line analysis of out-of-control signals in multivariate manufacturing processes. This model consists of two modules. In the first module using a support vector machine-classifier, type of unnatural pattern can be recognized. Then by using three neural networks for shift mean, trend and cycle it can be recognized magnitude of mean shift, slope of trend and cycle amplitude for each variable simultaneously in the second module. The performance of the proposed approach has been evaluated using two examples. The output generated by trained hybrid model is strongly correlated with the corresponding actual target value for each quality characteristic. The main contributions of this work are recognizing the type of unnatural pattern and classification major parameters for shift, trend and cycle and for each variable simultaneously by proposed hybrid model.  相似文献   

16.
Statistical process control (SPC) is a conventional means of monitoring software processes and detecting related problems, where the causes of detected problems can be identified using causal analysis. Determining the actual causes of reported problems requires significant effort due to the large number of possible causes. This study presents an approach to detect problems and identify the causes of problems using multivariate SPC. This proposed method can be applied to monitor multiple measures of software process simultaneously. The measures which are detected as the major impacts to the out-of-control signals can be used to identify the causes where the partial least squares (PLS) and statistical hypothesis testing are utilized to validate the identified causes of problems in this study. The main advantage of the proposed approach is that the correlated indices can be monitored simultaneously to facilitate the causal analysis of a software process.
Chih-Ping ChuEmail:

Ching-Pao Chang   is a PhD candidate in Computer Science & Information Engineering at the National Cheng-Kung University, Taiwan. He received his MA from the University of Southern California in 1998 in Computer Science. His current work deals with the software process improvement and defect prevention using machine learning techniques. Chih-Ping Chu   is Professor of Software Engineering in Department of Computer Science & Information Engineering at the National Cheng-Kung University (NCKU) in Taiwan. He received his MA in Computer Science from the University of California, Riverside in 1987, and his Doctorate in Computer Science from Louisiana State University in 1991. He is especially interested in parallel computing and software engineering.   相似文献   

17.
Strong deficiencies are present in symbolic models for action representation and planning, regarding mainly the difficulty of coping with real, complex environments. These deficiencies can be attributed to several problems, such as the inadequacy in coping with incompletely structured situations, the difficulty of interacting with visual and motorial aspects, the difficulty in representing low-level knowledge, the need to specify the problem at a high level of detail, and so on. Besides the purely symbolic approaches, several nonsymbolic models have been developed, such as the recent class of subsym-bolic techniques. A promising paradigm for the modeling of reasoning, which combines features of both symbolic and analogical approaches, is based on the construction of analogical models of the reference for the internal representations, as introduced by Johnson-Laird. In this work, we propose a similar approach to the problem of knowledge representation and reasoning about actions and plans. We propose a hybrid approach, symbolic and analogical, in which the inferences are partially devolved to measurements on analogical models generated starting from the symbolic representation. the interaction between the symbolic and the analogical level is due to the fact that procedures are connected to some symbols, allowing generating, updating, and verifying the mental model. the hybrid model utilizes, for the symbolic component, a representation system based on the distinction between terminological and assertional knowledge. the terminological component adopts a SI-Net formalism, extended by temporal primitives. the assertional component is a subset of first-order logics. the analogical representation is a set of concurrent procedures modeling parts of the world, action processes, simulations, and metaphors based on force fields concepts. A particular case study, regarding the problem of the assembly of a complex object from parts, is taken as an experimental paradigm. © 1993 John Wiley Sons, Inc.  相似文献   

18.
The asynchronous nature of the dataflow model of computation allows the exploitation of maximum inherent parallelism in many application programs. However, before the dataflow model of computation can become a viable alternative to the control flow model of computation, one has to find practical solutions to some problems such as efficient handling of data structures. The paper introduces a new model for handling data structures in a dataflow environment. The proposed model combines constant time access capabilities of vectors as well as the flexibility inherent in the concept of pointers. This allows a careful balance between copying and sharing to optimize the storage and processing overhead incurred during the operations on data structures. The mode] is compared by simulation to other data structure models proposed in the literature, and the results are good  相似文献   

19.
L. Lopez  D. Trigiante 《Calcolo》1982,19(4):379-395
A hybrid scheme is proposed for the numerical solution of a class of hyperbolic PDE describing the growth process for a population model. We study the stability of this method and the asymptotic behaviour of the numerical solution. Finally we show some numerical results.  相似文献   

20.
This paper may be considered as a sequel to one of our earlier works pertaining to the development of an upwind algorithm for meshless solvers. While the earlier work dealt with the development of an inviscid solution procedure, the present work focuses on its extension to viscous flows. A robust viscous discretization strategy is chosen based on positivity of a discrete Laplacian. This work projects meshless solver as a viable cartesian grid methodology. The point distribution required for the meshless solver is obtained from a hybrid cartesian gridding strategy. Particularly considering the importance of an hybrid cartesian mesh for RANS computations, the difficulties encountered in a conventional least squares based discretization strategy are highlighted. In this context, importance of discretization strategies which exploit the local structure in the grid is presented, along with a suitable point sorting strategy. Of particular interest is the proposed discretization strategies (both inviscid and viscous) within the structured grid block; a rotated update for the inviscid part and a Green-Gauss procedure based positive update for the viscous part. Both these procedures conveniently avoid the ill-conditioning associated with a conventional least squares procedure in the critical region of structured grid block. The robustness and accuracy of such a strategy is demonstrated on a number of standard test cases including a case of a multi-element airfoil. The computational efficiency of the proposed meshless solver is also demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号