首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 845 毫秒
1.
Most controllers optimization and design problems are multiobjective in nature, since they normally have several (possibly conflicting) objectives that must be satisfied at the same time. Instead of aiming at finding a single solution, the multiobjective optimization methods try to produce a set of good trade-off solutions from which the decision maker may select one. Several methods have been devised for solving multiobjective optimization problems in control systems field. Traditionally, classical optimization algorithms based on nonlinear programming or optimal control theories are applied to obtain the solution of such problems. The presence of multiple objectives in a problem usually gives rise to a set of optimal solutions, largely known as Pareto-optimal solutions. Recently, Multiobjective Evolutionary Algorithms (MOEAs) have been applied to control systems problems. Compared with mathematical programming, MOEAs are very suitable to solve multiobjective optimization problems, because they deal simultaneously with a set of solutions and find a number of Pareto optimal solutions in a single run of algorithm. Starting from a set of initial solutions, MOEAs use iteratively improving optimization techniques to find the optimal solutions. In every iterative progress, MOEAs favor population-based Pareto dominance as a measure of fitness. In the MOEAs context, the Non-dominated Sorting Genetic Algorithm (NSGA-II) has been successfully applied to solving many multiobjective problems. This paper presents the design and the tuning of two PID (Proportional–Integral–Derivative) controllers through the NSGA-II approach. Simulation numerical results of multivariable PID control and convergence of the NSGA-II is presented and discussed with application in a robotic manipulator of two-degree-of-freedom. The proposed optimization method based on NSGA-II offers an effective way to implement simple but robust solutions providing a good reference tracking performance in closed loop.  相似文献   

2.
Over the last decade, a variety of evolutionary algorithms (EAs) have been proposed for solving multiobjective optimization problems. Especially more recent multiobjective evolutionary algorithms (MOEAs) have been shown to be efficient and superior to earlier approaches. An important question however is whether we can expect such improvements to converge onto a specific efficient MOEA that behaves best on a large variety of problems. In this paper, we argue that the development of new MOEAs cannot converge onto a single new most efficient MOEA because the performance of MOEAs shows characteristics of multiobjective problems. While we point out the most important aspects for designing competent MOEAs in this paper, we also indicate the inherent multiobjective tradeoff in multiobjective optimization between proximity and diversity preservation. We discuss the impact of this tradeoff on the concepts and design of exploration and exploitation operators. We also present a general framework for competent MOEAs and show how current state-of-the-art MOEAs can be obtained by making choices within this framework. Furthermore, we show an example of how we can separate nondomination selection pressure from diversity preservation selection pressure and discuss the impact of changing the ratio between these components.  相似文献   

3.
Solving engineering design and resources optimization via multiobjective evolutionary algorithms (MOEAs) has attracted much attention in the last few years. In this paper, an efficient multiobjective differential evolution algorithm is presented for engineering design. Our proposed approach adopts the orthogonal design method with quantization technique to generate the initial archive and evolutionary population. An archive (or secondary population) is employed to keep the nondominated solutions found and it is updated by a new relaxed form of Pareto dominance, called Pareto-adaptive ϵ-dominance (paϵ-dominance), at each generation. In addition, in order to guarantee to be the best performance produced, we propose a new hybrid selection mechanism to allow the archive solutions to take part in the generating process. To handle the constraints, a new constraint-handling method is employed, which does not need any parameters to be tuned for constraint handling. The proposed approach is tested on seven benchmark constrained problems to illustrate the capabilities of the algorithm in handling mathematically complex problems. Furthermore, four well-studied engineering design optimization problems are solved to illustrate the efficiency and applicability of the algorithm for multiobjective design optimization. Compared with Nondominated Sorting Genetic Algorithm II, one of the best MOEAs available at present, the results demonstrate that our approach is found to be statistically competitive. Moreover, the proposed approach is very efficient and is capable of yielding a wide spread of solutions with good coverage and convergence to true Pareto-optimal fronts.  相似文献   

4.
This paper compares the effectiveness of five state-of-the-art multiobjective evolutionary algorithms (MOEAs) together with a steady state evolutionary algorithm on the mean–variance cardinality constrained portfolio optimization problem (MVCCPO). The main computational challenges of the model are due to the presence of a nonlinear objective function and the discrete constraints. The MOEAs considered are the Niched Pareto genetic algorithm 2 (NPGA2), non-dominated sorting genetic algorithm II (NSGA-II), Pareto envelope-based selection algorithm (PESA), strength Pareto evolutionary algorithm 2 (SPEA2), and e-multiobjective evolutionary algorithm (e-MOEA). The computational comparison was performed using formal metrics proposed by the evolutionary multiobjective optimization community on publicly available data sets which contain up to 2196 assets.  相似文献   

5.
This paper addresses a real-world engineering design requiring the application of effective and global optimization techniques. The problem it deals with is the design of nonlinear tracking filters under up to several hundreds of performance specifications. The suitability of different evolutionary computation techniques for solving multiobjective problems is explored, contrasting the performance achieved with recent multiobjective evolutionary algorithm (MOEAs) proposals and different aggregation schemes. In particular, a new scheme is proposed to build a fitness function based on an operator that selects worst cases of multiple specifications in different situations. They have been evaluated in the design of an air traffic control (ATC) tracking filter that should accomplish a specific normative with 264 specifications. Results show their performance in terms of effectiveness and computational load, comparing their capability to scale the problem with respect to problem size.  相似文献   

6.
Over the past few years, the research on evolutionary algorithms has demonstrated their niche in solving multiobjective optimization problems, where the goal is to find a number of Pareto-optimal solutions in a single simulation run. Many studies have depicted different ways evolutionary algorithms can progress towards the Pareto-optimal set with a widely spread distribution of solutions. However, none of the multiobjective evolutionary algorithms (MOEAs) has a proof of convergence to the true Pareto-optimal solutions with a wide diversity among the solutions. In this paper, we discuss why a number of earlier MOEAs do not have such properties. Based on the concept of epsilon-dominance, new archiving strategies are proposed that overcome this fundamental problem and provably lead to MOEAs that have both the desired convergence and distribution properties. A number of modifications to the baseline algorithm are also suggested. The concept of epsilon-dominance introduced in this paper is practical and should make the proposed algorithms useful to researchers and practitioners alike.  相似文献   

7.
In the last two decades, multiobjective optimization has become main stream and various multiobjective evolutionary algorithms (MOEAs) have been suggested in the field of evolutionary computing (EC) for solving hard combinatorial and continuous multiobjective optimization problems. Most MOEAs employ single evolutionary operators such as crossover, mutation and selection for population evolution. In this paper, we suggest a multiobjective evolutionary algorithm based on multimethods (MMTD) with dynamic resource allocation for coping with continuous multi-objective optimization problems (MOPs). The suggested algorithm employs two well known population based stochastic algorithms namely MOEA/D and NSGA-II as constituent algorithms for population evolution with a dynamic resource allocation scheme. We have examined the performance of the proposed MMTD on two different MOPs test suites: the widely used ZDT problems and the recently formulated test instances for the special session on MOEAs competition of the 2009 IEEE congress on evolutionary computation (CEC’09). Experimental results obtained by the suggested MMTD are more promising than those of some state-of-the-art MOEAs in terms of the inverted generational distance (IGD)-metric on most test problems.  相似文献   

8.
A morphing wing concept has been investigated over the last decade because it can effectively enhance aircraft aerodynamic performance over a wider range of flight conditions through structural flexibility. The internal structural layouts and component sizes of a morphing aircraft wing have an impact on aircraft performance i.e. aeroelastic characteristics, mechanical behaviors, and mass. In this paper, a novel design approach is proposed for synthesizing the internal structural layout of a morphing wing. The new internal structures are achieved by using two new design strategies. The first design strategy applies design variables for simultaneous partial topology and sizing optimization while the second design strategy includes nodal positions as design variables. Both strategies are based on a ground structure approach. A multiobjective optimization problem is assigned to optimize the percentage of change in lift effectiveness, buckling factor, and mass of a structure subject to design constraints including divergence and flutter speeds, buckling factors, and stresses. The design problem is solved by using multiobjective population-based incremental learning (MOPBIL). The Pareto optimum results of both strategies lead to different unconventional wing structures which are superior to their conventional counterparts. From the results, the design strategy that uses simultaneous partial topology, sizing, and shape optimization is superior to the others based on a hypervolume indicator. The aeroelastic parameters of the obtained morphing wing subject to external actuating torques are analyzed and it is shown that it is practicable to apply the unconventional wing structures for an aircraft.  相似文献   

9.
A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA   总被引:3,自引:0,他引:3  
This paper describes a simulated annealing based multiobjective optimization algorithm that incorporates the concept of archive in order to provide a set of tradeoff solutions for the problem under consideration. To determine the acceptance probability of a new solution vis-a-vis the current solution, an elaborate procedure is followed that takes into account the domination status of the new solution with the current solution, as well as those in the archive. A measure of the amount of domination between two solutions is also used for this purpose. A complexity analysis of the proposed algorithm is provided. An extensive comparative study of the proposed algorithm with two other existing and well-known multiobjective evolutionary algorithms (MOEAs) demonstrate the effectiveness of the former with respect to five existing performance measures, and several test problems of varying degrees of difficulty. In particular, the proposed algorithm is found to be significantly superior for many objective test problems (e.g., 4, 5, 10, and 15 objective problems), while recent studies have indicated that the Pareto ranking-based MOEAs perform poorly for such problems. In a part of the investigation, comparison of the real-coded version of the proposed algorithm is conducted with a very recent multiobjective simulated annealing algorithm, where the performance of the former is found to be generally superior to that of the latter.  相似文献   

10.
多目标进化算法中选择策略的研究   总被引:3,自引:1,他引:2  
在多目标进化算法(multiobjective evolutiorlsry algorithms,MOEAs)的文献中,对算法的选择策略进行系统研究的还很少,而MOEAs的选择策略不仅引导算法的搜索过程、决定搜索的方向而且对算法的收敛性有重要的影响,它是算法能否成功求解多目标优化问题的关键因素之一.在统一的框架下,首先讨论了多目标优化问题中适应度函数的构造问题,然后根据MOEAs的选择机制和原理将它们的选择策略重新分成了6种类型.一般文献中很少对多目标进化算法的操作算子采用符号化描述,这样不利于对算子的深层次理解,符号化描述了各类选择策略的操作机制和原理,并分析了各类策略的优劣性.最后,从理论上证明了具备一定特征的多目标进化算法的收敛性,证明的过程表明了将算法运行终止时得到的P known作为多目标优化问题的Pareto最优解集或近似最优解集的合理性.  相似文献   

11.
The classical problem of partitioning a given set of points, has applications in several areas such as facility location, scattered network, and in hierarchical design of VLSI circuits. While equipartitioning is traditionally associated with the single objective of minimum cutcost, the above application areas appear to demand more. In this paper, we introduce the problem of multiobjective k-way equipartitioning of a point set. Brief discussions on the above applications are followed by their generic formulation as a multiobjective k-way equipartitioning problem of a given point set. The non-commensurate multiobjective criteria addressed include (i) minimizing overall areas of the partitions, (ii) maximizing area of the individual partitions, (iii) minimizing the total compactness of the partitions, and (iv) minimizing the total geometric diversity of the obtained partitions. Since this optimization problem is computationally expensive in time and space, a technique based on genetic algorithm is proposed in order to obtain high quality results. Crossover and mutation operators specific to the k-way equipartitioning problem, have been designed and a new greedy operator named compaction is proposed to accelerate convergence. To illustrate the utility of the proposed formulation and the algorithm, a problem in VLSI layout design is considered. Results on synthetic data sets as well as those extracted from layouts of benchmark circuits demonstrate the effectiveness of the proposed multiobjective approach.  相似文献   

12.
The problem in software cost estimation revolves around accuracy. To improve the accuracy, heuristic/meta-heuristic algorithms have been known to yield better results when it is applied in the domain of software cost estimation. For the sake of accuracy in results, we are still modifying these algorithms. Here we have proposed a new meta-heuristic algorithm based on Differential Evolution (DE) by Homeostasis mutation operator. Software development requires high prediction and low Root Mean Squared Error (RMSE) and mean magnitude relative error(MMRE). The problem in software cost estimation relates to accurate prediction and minimization of RMSE and MMRE, which are used to solve multiobjective optimization. Many versions of DE were proposed, however multi-objective versions where the concept of Pareto optimality is used, are most popular. Pareto-Based Differential Evolution (PBDE) is one of them. Although the performance of this algorithm is very good, its convergence rate can be further improved by minimizing the time complexity of nondominated sorting, and by improving the diversity of solutions. This has been implemented by using efficient nondominated algorithm whose time complexity is better than the previous one and a new mutation scheme is implemented in DE which can provide more diversity among solutions. The proposed variant multiplies the Homeostasis value with one more vector, named the Homeostasis mutation vector, in the existing mutation vector to provide more bandwidth for selecting effective mutant solutions. The proposed approach provides more promising solutions to guide the evolution and helps DE escape the situation of stagnation. The performance of the proposed algorithm is evaluated on twelve benchmark test functions (bi-objective and tri-objective) on the Pareto-optimal front. The performance of the proposed algorithm is compared with other state-of-the-art algorithms on five multi-objective evolutionary algorithms (MOEAs). The result verifies that our proposed Homeostasis mutation strategy performs better than other state-of-the-art algorithms. Finally, application of MODE-HBM is applied to solve in terms of Pareto front, representing the trade-off between development RMSE, MMRE, and prediction for COCOMO model.  相似文献   

13.
Evolutionary algorithms (EAs) have been widely used in handling various water resource optimization problems in recent years. However, it is still challenging for EAs to identify near-optimal solutions for realistic problems within the available computational budgets. This paper introduces a novel multi-objective optimization method to improve the efficiency of a typically difficult water resource problem: water distribution network (WDN) design. In the proposed approach, a WDN is decomposed into different sub-networks using decomposition techniques. EAs optimize these sub-networks individually, generating Pareto fronts for each sub-network with great efficiency. A propagation method is proposed to evolve Pareto fronts of the sub-networks towards the Pareto front for the full network while eliminating the need to hydraulically simulate the intact network itself. Results from two complex realistic WDNs show that the proposed approach is able to find better fronts than conventional full-search algorithms (optimize the entire network without decomposition) with dramatically improved efficiency.  相似文献   

14.
In practical multi-objective optimization problems, respective decision-makers might be interested in some optimal solutions that have objective values closer to their specified values. Guided multi-objective evolutionary algorithms (guided MOEAs) have been significantly used to guide their evolutionary search direction toward these optimal solutions using by decision makers. However, most guided MOEAs need to be iteratively and interactively evaluated and then guided by decision-makers through re-formulating or re-weighting objectives, and it might negatively affect the algorithms performance. In this paper, a novel guided MOEA that uses a dynamic polar-based region around a particular point in objective space is proposed. Based on the region, new selection operations are designed such that the algorithm can guide the evolutionary search toward optimal solutions that are close to the particular point in objective space without the iterative and interactive efforts. The proposed guided MOEA is tested on the multi-criteria decision-making problem of flexible logistics network design with different desired points. Experimental results show that the proposed guided MOEA outperforms two most effective guided and non-guided MOEAs, R-NSGA-II and NSGA-II.  相似文献   

15.
Division of the evolutionary search among multiple multi-objective evolutionary algorithms (MOEAs) is a recent advantage in MOEAs design, particularly in effective parallel and distributed MOEAs. However, most these algorithms rely on such a central (re) division that affects the algorithms’ efficiency. This paper first proposes a local MOEA that searches on a particular region of objective space with its novel evolutionary selections. It effectively searches for Pareto Fronts (PFs) inside the given polar-based region, while nearby the region is also explored, intelligently. The algorithm is deliberately designed to adjust its search direction to outside the region – but nearby – in the case of a region with no Pareto Front. With this contribution, a novel island model is proposed to run multiple forms of the local MOEA to improve a conventional MOEA (e.g. NSGA-II or MOEA/D) running along – in another island. To dividing the search, a new division technique is designed to give particular regions of objective space to the local MOEAs, frequently and effectively. Meanwhile, the islands benefit from a sophisticated immigration strategy without any central (re) collection, (re) division and (re) distribution acts. Results of three experiments have confirmed that the proposed island model mostly outperforms to the clustering MOEAs with similar division technique and similar island models on DTLZs. The model is also used and evaluated on a real-world combinational problem, flexible logistic network design problem. The model definitely outperforms to a similar island model with conventional MOEA (NSGA-II) used in each island.  相似文献   

16.
Environmental economic dispatch of fixed head of hydrothermal power systems is viewed as a mulitobjective optimization problem in this paper. The practical hydrothermal system possesses various constraints which make the problem of finding global optimum difficult. This paper develops an improved multiobjective estimation of distribution algorithm to solving the above problem. A local learning operation is added into the original regularity model-based multiobjective estimation of distribution algorithm (RM-MEDA) in the improved approach so as to improve the local search ability and enhance the convergence efficiency. Furthermore, a repair mechanism is employed to repair the searched infeasible solutions in order to be able to search in the feasible region. In the experiment, the results obtained by the proposed approach have been compared with those from other three MOEAs: NSGA-II, NNIA, and RM-MEDA. Results from some pervious reported methods have also been employed to compare with our method. In addition, the results demonstrate the superiority of this proposed method as a promising MOEA to solve this power system multiobjective optimization problem.  相似文献   

17.
Differential evolution (DE) has recently emerged as a simple yet very powerful technique for real parameter optimization. This article describes an application of DE to the design of fractional-order proportional–integral–derivative (FOPID) controllers involving fractional-order integrator and fractional-order differentiator. FOPID controllers’ parameters are composed of the proportionality constant, integral constant, derivative constant, derivative order and integral order, and its design is more complex than that of conventional integer-order proportional–integral–derivative (PID) controller. Here the controller synthesis is based on user-specified peak overshoot and rise time and has been formulated as a single objective optimization problem. In order to digitally realize the fractional-order closed-loop transfer function of the designed plant, Tustin operator-based continuous fraction expansion (CFE) scheme was used in this work. Several simulation examples as well as comparisons of DE with two other state-of-the-art optimization techniques (Particle Swarm Optimization and binary Genetic Algorithm) over the same problems demonstrate the superiority of the proposed approach especially for actuating fractional-order plants. The proposed technique may serve as an efficient alternative for the design of next-generation fractional-order controllers.  相似文献   

18.
Sesame is a software framework that aims at developing a modeling and simulation environment for the efficient design space exploration of heterogeneous embedded systems. Since Sesame recognizes separate application and architecture models within a single system simulation, it needs an explicit mapping step to relate these models for cosimulation. The design tradeoffs during the mapping stage, namely, the processing time, power consumption, and architecture cost, are captured by a multiobjective nonlinear mixed integer program. This paper aims at investigating the performance of multiobjective evolutionary algorithms (MOEAs) on solving large instances of the mapping problem. With two comparative case studies, it is shown that MOEAs provide the designer with a highly accurate set of solutions in a reasonable amount of time. Additionally, analyses for different crossover types, mutation usage, and repair strategies for the purpose of constraints handling are carried out. Finally, a number of multiobjective optimization results are simulated for verification.  相似文献   

19.
Multiobjective evolutionary algorithms: analyzing the state-of-the-art   总被引:34,自引:0,他引:34  
Solving optimization problems with multiple (often conflicting) objectives is, generally, a very difficult goal. Evolutionary algorithms (EAs) were initially extended and applied during the mid-eighties in an attempt to stochastically solve problems of this generic class. During the past decade, a variety, of multiobjective EA (MOEA) techniques have been proposed and applied to many scientific and engineering applications. Our discussion's intent is to rigorously define multiobjective optimization problems and certain related concepts, present an MOEA classification scheme, and evaluate the variety of contemporary MOEAs. Current MOEA theoretical developments are evaluated; specific topics addressed include fitness functions, Pareto ranking, niching, fitness sharing, mating restriction, and secondary populations. Since the development and application of MOEAs is a dynamic and rapidly growing activity, we focus on key analytical insights based upon critical MOEA evaluation of current research and applications. Recommended MOEA designs are presented, along with conclusions and recommendations for future work.  相似文献   

20.
肖婧  毕晓君  王科俊 《软件学报》2015,26(7):1574-1583
目标数超过4的高维多目标优化是目前进化多目标优化领域求解难度最大的问题之一,现有的多目标进化算法求解该类问题时,存在收敛性和解集分布性上的缺陷,难以满足实际工程优化需求.提出一种基于全局排序的高维多目标进化算法GR-MODE,首先,采用一种新的全局排序策略增强选择压力,无需用户偏好及目标主次信息,且避免宽松Pareto支配在排序结果合理性与可信性上的损失;其次,采用Harmonic平均拥挤距离对个体进行全局密度估计,提高现有局部密度估计方法的精确性;最后,针对高维多目标复杂空间搜索需求,设计新的精英选择策略及适应度值评价函数.将该算法与国内外现有的5种高性能多目标进化算法在标准测试函数集DTLZ{1,2, 4,5}上进行对比实验,结果表明,该算法具有明显的性能优势,大幅提升了4~30维高维多目标优化的收敛性和分布性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号