共查询到17条相似文献,搜索用时 15 毫秒
1.
《Organic Electronics》2014,15(1):82-90
We report on the tunability of ferroelectric properties of Poly(vinylidenedifluoride–trifluoroethylene) P(VDF–TrFE) thin films by controlling the cooling rate during transformation from high temperature paraelectric α-phase to low temperature ferroelectric β-phase. A faster cooling rate of P(VDF–TrFE) thin films leads to an increased polarization by 30% and much decreased coercivity by 60%. The origin of these improvements in the ferroelectric characteristics is attributed to evolution of a favorable microstructure and crystallographic alignment leading to (1 1 0) oriented films that are cooled faster. The microstructure of the films changes from a fine fibrous structure at fast cooling rate to a flatter ripple containing structure in the slow cooled samples. This dramatic change in the microstructure is attributed to the combination of incorporation of large stresses arising from almost 50% change in the molar volume of P(VDF–TrFE) upon α → β transformation and the cooling rate assisted stress relaxation, nucleation and growth. Infrared spectroscopy further showed that the substantial improvement in the device performance of the fast cooled samples arises from a favorable alignment of C–F dipoles due to short and ordered fibers lying on the substrate plane whose orientation becomes more random as the cooling rate is decreased. 相似文献
2.
Soon‐Won Jung Bock Soon Na Kang‐Jun Baeg Minseok Kim Sung‐Min Yoon Juhwan Kim Dong‐Yu Kim In‐Kyu You 《ETRI Journal》2013,35(4):734-737
Nonvolatile ferroelectric poly(vinylidene fluoride‐co‐trifluoroethylene) memory based on an organic thin‐film transistor with inkjet‐printed dodecyl‐substituted thienylenevinylene‐thiophene copolymer (PC12TV12T) as the active layer is developed. The memory window is 4.5 V with a gate voltage sweep of ?12.5 V to 12.5 V. The field effect mobility, on/off ratio, and gate leakage current are 0.1 cm2/Vs, 105, and 10?10 A, respectively. Although the retention behaviors should be improved and optimized, the obtained characteristics are very promising for future flexible electronics. 相似文献
3.
Downscaling and Charge Transport in Nanostructured Ferroelectric Memory Diodes Fabricated by Solution Micromolding 下载免费PDF全文
Thomas Lenz Matteo Ghittorelli Frank Simon Benneckendorf Kamal Asadi Christian Kasparek Gunnar Glasser Paul W. M. Blom Fabrizio Torricelli Dago M. de Leeuw 《Advanced functional materials》2016,26(28):5111-5119
Ferroelectric polymer memory diodes are interface devices where charge injection into the organic semiconductor is controlled by the stray electric field of the ferroelectric polymer. Key to high current density and current modulation is the areal density of well‐defined interfaces. Here, bistable diodes are fabricated by using the soft lithography method solution micromolding. First, the semiconducting polymer poly(9,9‐dioctylfluorene) is patterned into linear gratings. Subsequently, bilinear arrays are obtained by backfilling with the ferroelectric polymer poly(vinylidenefluoride‐co‐trifluoroethylene). The lateral feature size is scaled down from 2 μm to 500 nm. Comprising memory diodes show rectifying J–V characteristics with an On‐current density larger than 103 A m?2 and an On/Off current ratio exceeding 103. The charge transport is explained by 2D numerical simulations. Since the dependence of polarization on electric field is explicitly taken into account, entire J–V characteristics can be quantitatively described. The simulations reveal that rectifying J–V characteristics are inherently related to the concave shape of the patterned ferroelectric polymer. It is argued that the exponential increase in current density with decreasing feature size can be due to confinement of the semiconductor. High On‐current density combined with downscaling, rectification, and simple fabrication yield new opportunities for low‐cost integration of high‐density solution‐processed memories. 相似文献
4.
Xiang‐Zhong Chen Qian Li Xin Chen Xu Guo Hai‐Xiong Ge Yun Liu Qun‐Dong Shen 《Advanced functional materials》2013,23(24):3124-3129
Ferroelectric vinylidene fluoride‐trifluoroethylene copolymer [P(VDF‐TrFE)] free‐standing ultrahigh density (≈75 Gb inch?2) nanodot arrays are successfully fabricated through a facile, high‐throughput, and cost‐effective nano‐imprinting method using disposable anodic aluminum oxide with orderly arranged nanometer‐scale pores as molds. The nanodots show a large‐area smooth surface morphology, and the piezoresponse in each nanodot is strong and uniform. The preferred orientation of the copolymer chains in the nanodot arrays is favorable for polarization switching of single nanodots. The ferroelectric polymer memory prototype can be operated by a few volts with high writing/erasing speed, which comply with the requirements of integrated circuit. This approach provides a way of directly writing nanometer electronic features in two dimensions by piezoresponse force microscopy probe based technology, which is attractive for high density data storage. 相似文献
5.
近年来,物联网和人工智能等技术的发展对片上存储与智能计算的能效、密度以及性能提出了更高的要求。面对传统CMOS处理器的能效与密度瓶颈,以及传统冯·诺伊曼架构的“存储墙”瓶颈,以铁电晶体管 (FeFET)为代表的新型非易失存储器 (NVM)提供了新的机遇。FeFET具有非易失、高能效、高开关比等特点,非常适合低功耗、高密度场景下的存储与存算一体 (CiM)应用,为数据密集型应用在边缘端的部署提供支持。该文回顾了FeFET的发展历程、结构、特性以及建模相关的工作,概述了FeFET存储器在电路结构和访存机制上的探索与优化。进一步地,该文还探讨了FeFET CiM在非易失计算、存内逻辑计算、矩阵向量乘法以及内容可寻址存储器上的应用。最后,该文从不同方面分析并展望了基于FeFET的存储与CiM电路的前景与挑战。 相似文献
6.
Vsevolod Khikhlovskyi Andrey V. Gorbunov Albert J.J.M. van Breemen René A.J. Janssen Gerwin H. Gelinck Martijn Kemerink 《Organic Electronics》2013,14(12):3399-3405
Storage of multiple bits per element is a promising alternative to miniaturization for increasing the information data density in memories. Here we introduce a multi-bit organic ferroelectric-based non-volatile memory with binary readout from a simple capacitor structure. The functioning of our multi-bit concept is quite generally applicable and depends on the following properties for the data storage medium: (a) The data storage medium effectively consists of microscopic switching elements (‘hysterons’). (b) The positive and negative coercive fields of each hysteron are equal in magnitude. (c) The distribution of hysteron coercive fields has substantial width. We show that the organic ferroelectric copolymer P(VDF-TrFE) meets these requirements. All basic properties of our device were measured and modeled in the framework of the dipole switching theory (DST). As a first example we show the possibility to independently program and subsequently read out the lower, middle and upper parts of the hysteron distribution function, yielding a 3-bit memory in a single capacitor structure. All measured devices show good state reproducibility, high endurance and potentially great scalability. 相似文献
7.
Self‐Powered Trace Memorization by Conjunction of Contact‐Electrification and Ferroelectricity 下载免费PDF全文
Xiangyu Chen Mitsumasa Iwamoto Zhemin Shi Limin Zhang Zhong Lin Wang 《Advanced functional materials》2015,25(5):739-747
Triboelectric nanogenerator (TENG) is a newly invented technology that can effectively harvest ambient mechanical energy from various motions with promising applications in portable electronics, self‐powered sensor networks, etc. Here, by coupling TENG and a thin film of ferroelectric polymer, a new application is designed for TENG as a self‐powered memory system for recording a mechanical displacement/trace. The output voltage produced by the TENG during motion can polarize the dipole moments in the ferroelectric thin film. Later, by applying a displacement current measurement to detect the polarization density in the ferroelectric film, the motion information of the TENG can be directly read. The sliding TENG and the single‐electrode TENG matrix are both utilized for realizing the memorization of the motion trace in one‐dimensional and two‐dimensional space, respectively. Currently, the ferroelectric thin film with a size of 3.1 mm2 can record a minimum area changing of 30 mm2 and such resolution can still be possibly improved. These results prove that the ferroelectric polymer is an effective memory material to work together with TENG and thereby the fabricated memory system can potentially be used as a self‐powered displacement monitor. 相似文献
8.
Future flexible electronic systems require memory devices combining low power consumption and mechanical bendability. However, high programming/erasing (P/E) voltages, which are universally required to switch the storage states in previously reported ferroelectric organic field-effect transistor (Fe-OFET) nonvolatile memories (NVMs), severely prevent their practical applications. In this work, we develop a novel route to achieve a low-voltage programmable/erasable flexible Fe-OFET NVM. Ferroelectric terpolymer poly(vinylidene-fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE)], rather than the conventional ferroelectric copolymer poly(vinylidene-fluoride-trifluoroethylene) [P(VDF-TrFE)], is used as the gate dielectric. The low coercive field of P(VDF-TrFE-CTFE) is the main contribution to the low-voltage operation in the Fe-OFET NVM, even with a relative thick ferroelectric gate dielectric layer. By depositing a long-chain alkane molecule Tetratetracontane (TTC) as the passivation layer on the surface of P(VDF-TrFE-CTFE) film, the layer-by-layer growth mode of semiconductor pentacene is obtained, which results in a large crystalline grain and good interface morphology at the channel/dielectric. Therefore, the mobility of Fe-OFET NVMs is greatly improved. As a result, a high performance flexible Fe-OFET NVM is achieved, with a low P/E voltage of ±15 V, high mobility up to 0.5 cm2 V−1 s−1, reliable P/E endurance property over 1000 cycles, stable data storage retention capability over 6000 s, and excellent mechanical bending durability without visible degradation after 2000 repetitive tensile bending cycles at a small curvature radius of 4.0 mm. 相似文献
9.
High‐Performance Piezoelectric,Pyroelectric, and Triboelectric Nanogenerators Based on P(VDF‐TrFE) with Controlled Crystallinity and Dipole Alignment 下载免费PDF全文
Jihye Kim Jeong Hwan Lee Hanjun Ryu Ju‐Hyuck Lee Usman Khan Han Kim Sung Soo Kwak Sang‐Woo Kim 《Advanced functional materials》2017,27(22)
Poly(vinylidenefluoride‐co‐trifluoroethylene) (P(VDF‐TrFE)), as a ferroelectric polymer, offers great promise for energy harvesting for flexible and wearable applications. Here, this paper shows that the choice of solvent used to dissolve the polymer significantly influences its properties in terms of energy harvesting. Indeed, the P(VDF‐TrFE) prepared using a high dipole moment solvent has higher piezoelectric and pyroelectric coefficients and triboelectric property. Such improvements are the result of higher crystallinity and better dipole alignment of the polymer prepared using a higher dipole moment solvent. Finite element method simulations confirm that the higher dipole moment results in higher piezoelectric, pyroelectric, and triboelectric potential distributions. Furthermore, P(VDF‐TrFE)‐based piezoelectric, pyroelectric, and triboelectric nanogenerators (NGs) experimentally validate that the higher dipole moment solvent significantly enhances the power output performance of the NGs; the improvement is about 24% and 82% in output voltage and current, respectively, for piezoelectric NG; about 40% and 35% in output voltage and current, respectively, for pyroelectric NG; and about 65% and 75% in output voltage and current for triboelectric NG. In brief, the approach of using a high dipole moment solvent is very promising for high output P(VDF‐TrFE)‐based wearable NGs. 相似文献
10.
Energy Harvesting: High‐Performance Piezoelectric,Pyroelectric, and Triboelectric Nanogenerators Based on P(VDF‐TrFE) with Controlled Crystallinity and Dipole Alignment (Adv. Funct. Mater. 22/2017) 下载免费PDF全文
Jihye Kim Jeong Hwan Lee Hanjun Ryu Ju‐Hyuck Lee Usman Khan Han Kim Sung Soo Kwak Sang‐Woo Kim 《Advanced functional materials》2017,27(22)
11.
Richard Hahnkee KimSeok Ju Kang Insung BaeYeon Sik Choi Youn Jung ParkCheolmin Park 《Organic Electronics》2012,13(3):491-497
In this study, we investigated the molecular and microstructures of thin poly(vinylidene fluoride-chlorotrifluoro ethylene) (PVDF-CTFE) copolymer films with three different CTFE compositions of 10, 15, 20 wt% with respect to PVDF in relation with their ferroelectric properties. All PVDF-CTFE annealed at 130 °C showed consecutive TTTT trans conformation with β type crystals while films molten and re-crystallized from a temperature above their melting points exhibited α type crystals with characteristic TGTG conformation. Microstructures of the films treated with the two different thermal histories also supported the formation of β and α type crystals with hundreds of nanometer scale sphere caps and micron level spherulites, respectively. Interestingly, PVDF-CTFE films with both α and β type crystals gave rise to relatively high remnant polarization of approximately 4 μC/cm2 in metal/ferroelectric/metal capacitors regardless of the composition of CTFE. The ferroelectric polarization of a PVDF-CTFE film independent of thermal processing history allowed a wide processing window and easy fabrication protocol, resulting in a non-volatile ferroelectric field effect transistor memory which exhibited saturated hysteresis loops with the current ON/OFF ratio of approximately 103 at ±60 V sweep and reliable data retention. 相似文献
12.
The nonvolatile memory thin-film transistors (M-TFTs) using a solution-processed indium-zinc-titanium oxide (IZTiO) active channel and a poly(vinylidene fluoride-trifluoroethylene) ferroelectric gate insulator were fabricated and characterized to elucidate the relationships between the IZTiO channel composition and the memory performances such as program speed and data retention. The compositions of the spin-coated IZTiO layers were modified with different Ti amounts of 0, 2, 5, and 10 mol%. The carrier concentration of IZTiO channel layer was effectively modulated by the incorporated Ti amounts and the defect densities within the channel were effectively reduced by Ti incorporation. The M-TFT fabricated with IZTiO channel with 2-mol% Ti composition exhibited the best overall device performances, in which the μFE, SS, MW, and programmed Ion/off were obtained to be 23.6 cm2 V?1 s?1, 701 mV/decade, 11.8 V, and 1.2 × 105, respectively. Furthermore, thanks to the suitable amounts of Ti incorporation into the IZO, the improved program speed and data retention properties were successfully confirmed. 相似文献
13.
Yeon Sik Choi Jinwoo Sung Seok Ju Kang Sung Hwan Cho Ihn Hwang Sun Kak Hwang June Huh Ho‐Cheol Kim Siegfried Bauer Cheolmin Park 《Advanced functional materials》2013,23(9):1120-1128
Films made of 2D networks of single‐walled carbon nanotubes (SWNTs) are one of the most promising active‐channel materials for field‐effect transistors (FETs) and have a variety of flexible electronic applications, ranging from biological and chemical sensors to high‐speed switching devices. Challenges, however, still remain due to the current hysteresis of SWNT‐containing FETs, which has hindered further development. A new and robust method to control the current hysteresis of a SWNT‐network FET is presented, which involves the non‐volatile polarization of a ferroelectric poly(vinylidene fluoride‐trifluoroethylene) (P(VDF‐TrFE)) gate insulator. A top‐gate FET with a solution‐processed SWNT‐network exhibits significant suppression of the hysteresis when the gate‐voltage sweep is greater than the coercive field of the ferroelectric polymer layer (≈50 MV m?1). These near‐hysteresis‐free characteristics are believed to be due to the characteristic hysteresis of the P(VDF‐TrFE), resulting from its non‐volatile polarization, which makes effective compensation for the current hysteresis of the SWNT‐network FETs. The onset voltage for hysteresis‐minimized operation is able to be tuned simply by controlling the thickness of the ferroelectric film, which opens the possibility of operating hysteresis‐free devices with gate voltages down to a few volts. 相似文献
14.
This study proposes a new generation of floating gate transistors (FGT) with a novel built-in security feature. The new device has applications in guarding the IC chips against the current reverse engineering techniques, including scanning capacitance microscopy (SCM). The SCM measures the change in the C–V characteristic of the device as a result of placing a minute amount of charge on the floating gate, even in nano-meter scales. The proposed design only adds a simple processing step to the conventional FGT by adding an oppositely doped implanted layer to the substrate. This new structure was first analyzed theoretically and then a two-dimensional model was extracted to represent its C–V characteristic. Furthermore, this model was verified with a simulation. In addition, the C–V characteristics relevant to the SCM measurement of both conventional and the new designed FGT were compared to discuss the effectiveness of the added layer in masking the state of the transistor. The effect of change in doping concentration of the implanted layer on the C–V characteristics was also investigated. Finally, the feasibility of the proposed design was examined by comparing its I–V characteristics with the traditional FGT. 相似文献
15.
Ashok Kumar M. R. Alam A. Mangiaracina M. Shamsuzzoha 《Journal of Electronic Materials》1997,26(11):1331-1334
Ferroelectric lead-zirconate-titanate (PZT) thin films were deposited by the pulsed laser deposition technique on Pt-coated
(100) Si substrates. This study was focused on the investigation of the PZT film growth on (100) Si substrate at varying deposition
parameters and electrical characterization of the films including hysteresis loop and fatigue properties by RT66A Standardized
Ferroelectric Test System. PZT deposited at higher temperature (575°C in 450 mTorr O2 partial pressure) showed the best crystalline structure. The remnant polarization and the retained polarization of the ferroelectric
capacitors were 13 μC/cm2 and 20 μC/cm2, respectively. The crystallographic properties of the films were determined using the x-ray diffractometer method. The cross-sectional
transmission electron microscope results showed very smooth interfaces among different layers of films. 相似文献
16.
A series of aromatic poly(ether imide)s, AZTA-PEIs containing triphenylamine and 1,2,4-triazole moieties are prepared and characterized. All the polymers with inherent viscosity from 0.58 to 1.1 dL/g show glass transition temperatures in the range of 250–278 °C. Resistive switching memory devices are constructed based on the processable poly(ether imide) (AZTA-PEIa). The device can be switched from the initial OFF state to the ON state under either positive or negative electrical sweep at about ±3.2 V. The ON state is nonvolatile and can maintain the high conducting state even turning off the electrical power and applying a reverse bias. The device fulfills the requirements of a write-once read-many times memory (WORM) with a high ON/OFF current ratio up to 105 and a long retention time in both ON and OFF states. The bistable switching effects of the polymer result from the conformation-coupled charge transfer from electron donors (triazole-substituted triphenylamine moieties) to electron acceptors (phthalimide moieties). By comparing with the memory behaviors of analogue polymers, the functions of ether and imide in the chemical polymer structure on the memory behaviors are discussed. 相似文献
17.
《Organic Electronics》2014,15(3):646-653
A planar water gated OFET (WG-OFET) structure is fabricated by patterning gate, source and drain electrodes on the same plane at the same time. Transistor output characteristics of this novel structure employing commercial regioregular poly(3-hexylthiophene) (rr-P3HT) as polymer semiconductor and deionized (DI) water as gate dielectric show successful field effect transistor operation with an on–off current ratio of 43 A/A and transconductance of 2.5 μA/V. These output characteristics are improved using P3HT functionalized with poly(ethylene glycol) (PEG) (P3HT-co-P3PEGT), which is more hydrophilic, leading to on–off ratio of 130 A/A and transconductance of 3.9 μA/V. Utilization of 100 mM NaCl solution instead of DI water significantly increases the on–off ratio to 141 A/A and transconductance to 7.17 μA/V for commercial P3HT and to 217 A/A and to 11.9 μA/V for P3HT-co-P3PEGT. Finally, transistors with improved transconductances are used to build digital inverters with improved characteristics. Gain of the inverters employing P3HT and P3HT-co-P3PEGT are measured as 2.9 V/V and 10.3 V/V, respectively, with 100 mM NaCl solution. 相似文献