首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The flexible organic ferroelectric nonvolatile memory thin film transistors (OFMTs) were fabricated on polydimethylsiloxane (PDMS) elastomer substrates, in which an organic ferroelectric poly(vinylidene-trifluoroethylene) and an organic semiconducting poly(9,9-dioctylfluorene-co-bithiophene) layers were used as gate insulator and active channel, respectively. The carrier mobility, on/off ratio, and subthreshold swing of the OFMTs fabricated on PDMS showed 5 × 10−2 cm2 V−1 s−1, 7.5 × 103, and 2.5 V/decade, respectively. These obtained values did not markedly change when the substrate was bent with a radius of curvature of 0.6 cm. The memory on/off ratio was initially obtained to be 1.5 × 103 and maintained to be 20 even after a lapse of 2000 s. The fabricated OFMTs exhibited sufficiently encouraging device characteristics even on the PDMS elastomer to realize mechanically stretchable nonvolatile memory devices.  相似文献   

2.
We propose all printed and highly stable organic resistive switching device (ORSD) based on graphene quantum dots (G-QDs) and polyvinylpyrrolidone (PVP) composite for non-volatile memory applications. It is fabricated by sandwiching G-QDs/PVP composite between top and bottom silver (Ag) electrodes on a flexible substrate polyethylene terephthalate (PET) at ambient conditions through a cost effective and eco-friendly electro-hydrodynamic (EHD) technique. Thickness of the active layer is measured around 97 nm. The proposed ORSD is fabricated in a 3 × 3 crossbar array. It operates switching between high resistance state (HRS) and low resistance state (LRS) with OFF/ON ratio ∼14 for more than 500 endurance cycles, and retention time for more than 30 days. The switching voltage for set/reset of the devices is ±1.8 V and the bendability down to 8 mm diameter for 1000 cycles are tested. The elemental composition and surface morphology are characterized by XPS, FE-SEM, and microscope.  相似文献   

3.
《Organic Electronics》2014,15(6):1290-1298
This paper investigates the effects of side chains, which are important structural constituents, on the characteristics of organic resistive memory devices with water-soluble polyfluorene (WPF) derivatives. The WPF derivatives have either an ethylene oxide (EO) or an alkyl side chain the lengths of the EO side chains are 2, 4, or 6 molecules. WPFs exhibit typical bipolar switching behaviors with reliable non-volatile characteristics and good device-to-device uniformity under ambient conditions. WPFs with the EO side chains showed better memory characteristics than those of the alkyl side chains of similar length. In addition, as the EO unit lengthened, the ON/OFF ratio of the memory device gradually increased from 5 × 102 to 105, and the threshold voltage (Vth) progressively decreased from 4 to 3.5 V. The retention times for WPF-hexyl, WPF-2O, WPF-4O, and WPF-6O are 104, 200, 104, and 104 s, respectively. The excellent switching properties of WPF-4O and WPF-6O are believed to be mainly attributed to highly localized current pathways and the low trap density.  相似文献   

4.
Nonvolatile organic memory devices were fabricated utilizing a graphene oxide (GO) layer embedded between two polystyrene (PS) layers. Scanning electron microscope images of GO sheets sandwiched between two PS layers showed that the GO sheets were clearly embedded in the PS layers. Capacitance–voltage (CV) curves of the Al/PS/GO/PS/n-type Si devices clearly showed hysteresis behaviors with multilevel characteristics. The window margin of the nonvolatile memory devices increased from 1 to 7 V with increasing applied sweep voltages from 6 to 32 V. The cycling retention of the ON/OFF switching for the devices was measured by applying voltages between +15 and −15 V. While the capacitance of the memory devices at an ON state have retained as 230 pF up to 104 cycles, that at an OFF state maintained as 16 pF during three times of repeated measurements. The extrapolation of the retention data for the devices maintained up to 106 cycles. The operating mechanisms of the nonvolatile organic memory devices with a floating gate were described by the CV results and the energy band diagrams.  相似文献   

5.
Organic-based devices with an 8 × 8 array structure using titanium dioxide nanoparticles (TiO2 NPs) embedded in poly(9-vinylcarbazole) (PVK) film exhibited bistable resistance states and a unipolar nonvolatile memory effect. TiO2 NPs were a key factor for realizing the bistability and the concentration of TiO2 NPs influenced ON/OFF ratio. From electrical measurements, switching mechanism of PVK:TiO2 NPs devices was closely associated with filamentary conduction model and it was found that the OFF state was dominated by thermally activated transport while the ON state followed tunneling transport. PVK:TiO2 NPs memory devices in 8 × 8 array structure showed a uniform cell-to-cell switching, stable switching endurance, and a high retention time longer than 104 s.  相似文献   

6.
Potential application of amorphous silicon nitride (a-Si3N4)/silicon oxy-nitride (SiON) film has been demonstrated as resistive non-volatile memory (NVM) device by studying the Al/Si3N4/SiON/p-Si metal–insulator–semiconductor (MIS) structure. The existence of several deep trap states was revealed by the photoluminescence characterizations. The bipolar resistive switching operation of this device was investigated by current–voltage measurements whereas the trap charge effect was studied in detail by hysteresis behavior of frequency dependent capacitance–voltage characteristics. A memory window of 4.6 V was found with the interface trap density being 6.4 × 1011 cm−2 eV−1. Excellent charge retention characteristics have been observed for the said MIS structure enabling it to be used as a reliable non-volatile resistive memory device.  相似文献   

7.
A series of simple structures is investigated for realization of the highly efficient green phosphorescent organic light emitting diodes with relatively low voltage operation. All the devices were fabricated with mixed host system by using 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) and 1,3,5-tri(p-pyrid-3-yl-phenyl)benzene (TpPyPB) which were known to be hole and electron type host materials due to their great hole and electron mobilities [μh(TAPC): 1 × 10?2 cm2/V s and μe(TpPyPB): 7.9 × 10?3 cm2/V s] [1]. The optimized device with thin TAPC (5–10 nm) as an anode buffer layer showed relatively high current and power efficiency with low roll-off characteristic up to 10,000 cd/m2. The performances of the devices; with buffer layer were compared to those of simple devices with single layer and three layers. Very interestingly, the double layer device with TAPC buffer layer showed better current and power efficiency behavior compared to that of three layer device with both hole and electron buffer layers (TAPC, TpPyPB, respectively).  相似文献   

8.
《Organic Electronics》2008,9(6):1061-1068
We have investigated a series of oligothiophenes in organic thin film transistors (TFTs), with special emphasis on their thin film morphology related to device performance and application requirements. The transistor performance was studied for devices fabricated at different substrate temperatures during semiconductor deposition (ranging from room temperature to 120 °C). A significant dependence of thin film morphology on the substrate temperature was observed, whereas the charge carrier mobility in devices occurs almost unaffected. We have tested the long-term stability of 78 transistor devices (shelf-life in ambient conditions) over a period up to 100 days. Only a small degradation in mobility by less than one order of magnitude was observed. Investigations at elevated temperatures during TFT operation (room temperature to 105 °C) show that devices with α,α′-hexylsexithiophene (Hex-6T-Hex) degrade in their charge carrier mobility by a factor of 8, but completely recover to their initial value of 0.7 cm2/Vs after a short period of storage at room temperature in ambient conditions.  相似文献   

9.
We have modeled and characterized scaled Metal–Al2O3–Nitride–Oxide–Silicon (MANOS) nonvolatile semiconductor memory (NVSM) devices. The MANOS NVSM transistors are fabricated with a high-K (KA = 9) blocking insulator of ALD deposited Al2O3 (8 nm), a LPCVD silicon nitride film (8 nm) for charge-storage, and a thermally grown tunneling oxide (2.2 nm). A low voltage program (+8 V, 30 μs) and erase (?8 V, 100 ms) provides an initial memory window of 2.7 V and a 1.4 V window at 10 years for an extracted nitride trap density of 6 × 1018 traps/cm3 eV. The devices show excellent endurance with no memory window degradation to 106 write/erase cycles. We have developed a pulse response model of write/erase operations for SONOS-type NVSMs. In this model, we consider the major charge transport mechanisms are band-to-band tunneling and/or trap-assisted tunneling. Electron injection from the inversion layer is treated as the dominant carrier injection for the write operation, while hole injection from the substrate and electron injection from the gate electrode are employed in the erase operation. Meanwhile, electron back tunneling is needed to explain the erase slope of the MANOS devices at low erase voltage operation. Using a numerical method, the pulse response of the threshold voltages is simulated in good agreement with experimental data. In addition, we apply this model to advanced commercial TANOS devices.  相似文献   

10.
《Organic Electronics》2014,15(6):1254-1262
We reported on the influence of zinc oxide nanoparticles (ZnO NPs) on the electrical bistable behavior of nonvolatile write-once-read-many-times (WORM) memory devices based on an indium-tin oxide/polyvinylpyrrolidone (PVP):ZnO NPs/aluminum (ITO/PVP:ZnO/Al) structure. The maximum ON/OFF current ratio of the nonvolatile WORM memory devices was approximately 3 × 103 and the devices remained in the ON state even after the applied voltage was turned off. In addition, reliability studies for response time and once write/continuous read operations of the optimal ZnO NPs concentration are presented. The response times of both rise-time and fall-time were about 3 and 6 μs respectively. The conduction mechanisms of all voltage regions of the device were analyzed by theoretical models and electron trapping in the ZnO NPs of the electron tunneling among a PVP matrix was discussed.  相似文献   

11.
AlGaN/GaN heterostructure field effect transistors (HFETs) were irradiated with 2 MeV protons, carbon, oxygen, iron and krypton ions with fluences ranging from 1 × 109 cm?2 to 1 × 1013 cm?2. DC, pulsed IV characteristics, loadpull and S-parameters of the AlGaN HFET devices were measured before and after irradiation. In parallel, a thick GaN reference layer was also irradiated with the same ions and was characterized by X-ray diffraction, photoluminescence, Hall measurements before and after irradiation. Small changes in the device performance were observed after irradiation with carbon and oxygen at a fluence of 5 × 1010 cm?2. Remarkable changes in device characteristics were seen at a fluence of 1 × 1012 cm?2 for carbon, oxygen, iron and krypton irradiation. Similarly, remarkable changes were also observed in the GaN layer for irradiations with fluence of 1 × 1012 cm?2. The results found on devices and on the GaN layer were compared and correlated.  相似文献   

12.
A photochromic diarylethene-based compound BMTA, which undergoes a reversible conversion between ring- open and closed isomers by alternating UV and visible light illumination, has been designed and synthesized. By utilizing a mask-free Digital Micro-mirror Device (DMD) micro-lithography system, arbitrary micro-photopatterning in polymer films doped with BMTA can be easily obtained with UV light writing. This recorded photo information can easily be erased by further visible light irradiation. The reversible and rewritable optical storage is based on photo-switched intermolecular energy transfer between the emissive host and the ring-closed isomer c-BMTA. Furthermore, the solution-processable organic light-emitting devices (OLEDs) with the single emitting layer doped with BMTA were fabricated, which exhibit rewritable memory behavior with light control. The luminescence and current density decrease significantly upon UV light irradiation, and recover by further visible light illumination. This is because the hole trapping is much facilitated in closed-ring isomer based devices, due to elevated HOMO level of c-BMTA. Without incorporating any cross-linking layer, the maximum luminescence and current density on/off ratios of this solution-processable and simple-structured device are 1.9 × 103 and 1.4 × 102, respectively. Arbitrary micro-photolithography of OLEDs by DMD system has also been demonstrated, which shows great prospects in large-scale production of high resolution OLED displays.  相似文献   

13.
《Organic Electronics》2014,15(8):1799-1804
Copper phthalocyanine (CuPc)-based thin film transistors were fabricated using CuPc films grown under different deposition pressure (Pdep) (ranging from 1.8 × 10−4 Pa to 1.0 × 10−1 Pa). The transistor performance highly depended on Pdep. A field-effect mobility of 2.1 × 10−2 cm2/(V s) was achieved under 1.0 × 10−1 Pa. Detailed investigations revealed that Pdep modulates the molecular packing and orientation of the organic films grown on a SiO2/Si substrate and influences the charge transport. Furthermore, from a device physics point of view, contact resistance of the fabricated transistors decreased when Pdep increased, which was beneficial in reducing energy consumption.  相似文献   

14.
Here, we report hybrid organic/inorganic ferroelectric memory with multilevel information storage using transparent p-type SnO semiconductor and ferroelectric P(VDF-TrFE) polymer. The dual gate devices include a top ferroelectric field-effect transistor (FeFET) and a bottom thin-film transistor (TFT). The devices are all fabricated at low temperatures (∼200 °C), and demonstrate excellent performance with high hole mobility of 2.7 cm2 V−1 s−1, large memory window of ∼18 V, and a low sub-threshold swing ∼−4 V dec−1. The channel conductance of the bottom-TFT and the top-FeFET can be controlled independently by the bottom and top gates, respectively. The results demonstrate multilevel nonvolatile information storage using ferroelectric memory devices with good retention characteristics.  相似文献   

15.
Ti/Pt as heating element for gas sensor applications was fabricated on silicon (Si) wafer substrate. The fabricated device was subjected to heat treatment at different prescribed time periods for thermal stability. The energy dispersion spectroscopy (EDS) results of the device indicated that there were no Ti traces on the Pt surface after heat treatment at 450 °C for 3 and 4 h in an argon (Ar) atmosphere. A maximum temperature coefficient of resistance (TCR) with a value of 2.88×10?3 K?1 was obtained for the device with 3 h heat treatment.  相似文献   

16.
《Optical Fiber Technology》2014,20(3):184-189
A wavelength routing device based on only one N × N cyclic arrayed waveguide grating (AWG) having easy extended channels configuration is presented in this paper. It is easy to extend the dense wavelength division multiplexing (DWDM) channel configuration through this wavelength routing device. According to the cyclic wavelength of AWG, the wavelength routing devices are easy to configure more than N extended DWDM channels through cascading more proper tunable fiber Bragg gratings (FBGs). With only one 8 × 8 AWG, two different wavelength routing structures were built to evaluate static crosstalk and the bit-error-rate (BER). Three of the 16 inputted DWDM channels were demonstrated to verify that the proposed wavelength routing device, with only one 8 × 8 AWG, could configure extended DWDM channels without interfering with other channels. The results show that the wavelength routing device can produces a better performance and offers a cheaper way to extend the DWDM channel configuration for a dynamic network.  相似文献   

17.
Benzopyrazine-fused tetracene (TBPy) and its disulfide (TBPyS) bearing alkoxy groups (OCH3, OC8H17) were designed and synthesized to obtain π-expanded tetracene derivatives. These derivatives are featured with long-wavelength light absorption property (λonset: up to 820 nm), photooxidative stability (half-lives (τ1/2): 11 times longer than tetracene), and solubility for solution process. The methoxy compounds (TBPy-C1 and TBPyS-C1) were used for single-crystal X-ray crystallographic analysis and single-crystal organic field-effect transistor (OFET) devices showing relationship between packing structures and hole mobilities. The octyloxy compounds (TBPy-C8 and TBPyS-C8) were investigated on solution-processed thin-film formation and hole transport property in thin-film OFET devices. Crystalline mesophase of TBPy-C8 and TBPyS-C8 was characterized by differential scanning calorimetry analysis showing endothermic peaks at 98 and 198 °C on its second heating process and exothermic peaks at 177 and 76 °C on its second cooling process for TBPyS-C8, and played crucial roles in thin-films formation. Hole mobility of 1.7 × 10?2 cm2/V s (with Vth = ?30 V and ION/IOFF = 104) was obtained for the thin-film OFET device of TBPyS-C8.  相似文献   

18.
The hysteresis in perovskites devices puzzled researchers because it was a big hurdle for device stability and the origin of it was still a riddle for people to solve. Here we reported our analysis in mechanism of the hysteresis based on the trap states in the perovskites film surface. We tried to explain the current hysteresis through the dynamic charge trapping–detrapping processes and the conclusion applied both in porous and planar structure devices. However, the proportion of deep traps and shallow traps are different in planar structure device and in porous structure device. Furthermore, we found perovskite devices has potentials of serving as memory devices due to the photocurrent hysteresis. The on/off ratio of memory based on perovskite can be higher than 60 and the write time was as low as 0.54 s as memory. It also had a very low read bias near 0 V. Moreover, the devices show multi-bit property and a multi-bit organic memory came forward as a novel application of perovskite devices.  相似文献   

19.
We report a unique non-radiative p-n-p junction structure to provide high current conduction with high mobility in organic semiconductor devices. The current conduction was improved by increasing p-n junctions made with intrinsic p-type hole transport layer and n-type electron transport layer. The excellent hole mobility of 5.3 × 10?1 cm2/V s in this p-n-p device configuration is measured by the space charge limited current method with an electric field of 0.3 MV/cm. Enhanced current conduction of 248% at 4.0 V was observed in fluorescent blue organic light-emitting diodes with introduction of non-radiative p-n-p-n-p junction interfaces. Thereupon, the power efficiency at 1000 cd/m2 was improved by 22% and the driving voltage also was reduced by 17%, compared to that of no interface device. Such high current conduction with high mobility is attributed to the carrier recombination at p-n-p interfaces through coulombic interaction. This non-radiative p-n-p junction structure suggested in this report can be very useful for many practical organic semiconductor device applications.  相似文献   

20.
Organic p–n bilayer photodiodes were produced by solution casting poly(3-hexylthiophene) (P3HT) from chlorobenzene and phenyl-C61-butyric acid methyl ester (PCBM):poly(4-chlorostyrene) (PClS) blends from the nearly orthogonal solvent dichloromethane onto flexible indium tin oxide (ITO)/polyester as a substrate. This is the first demonstration of PCBM–inert polymer blends for such a device. The electron mobility of a 90% PCBM–10% PClS blend was 3.5 × 10?3 cm2/V s in a field-effect transistor. The diodes showed a rectification ratio of 2.0 × 103 at ±2.0 V with a forward bias current density as high as 340 μA/cm2 at 2.0 V in the dark. Irradiation with various light sources (0.013–291 mW/cm2) under ambient atmosphere generated a linear increase in photocurrent. Photodiodes with thinner active layers showed larger photocurrent and relative photoresponse, probably because of lower series resistance and lower recombination probability. The reverse bias response was less dependent on device area than the forward bias response. Photocurrents from multiple devices in parallel were additive as expected. The results demonstrate a simple fabrication route to light detectors compatible with solution processes and flexible substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号