首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Composites Science and Technology》2007,67(15-16):3041-3050
Functionalization with different amino groups of multi-walled carbon nanotubes was achieved and nanotube-reinforced epoxy nanocomposites were prepared by mixing amino-functionalized multi-walled carbon nanotubes with epoxy resin. Differential scanning calorimetry, thermogravimetric analysis and bending tests were used to investigate the thermal and mechanical properties of the nanocomposites. The results showed that different kinds of amino-functionalized multi-walled carbon nanotubes would have different effects on the thermal and mechanical properties of the nanocomposites. The reinforcement mechanism of amino-functionalized multi-walled carbon nanotubes in epoxy resin was discussed.  相似文献   

2.
《Composites Part A》2007,38(9):2041-2046
Non-covalently functionalized carbon nanotubes are more attractive for multifunction composites because they preserve nearly all the nanotubes’ intrinsic properties and enhance the electroconductivity of polymer composites. However, It is seldom reported that they make dramatic improvement in mechanical properties. In this paper we have successfully prepared a poly(vinyl alcohol) (PVA) nanocomposite with a non-covalently functionalized carbon nanotube (DOC-MWNTs) using a simple method, which achieve a significant enhancement in mechanical properties. The tensile modulus and tensile yield strength of the PVA composite film containing 5 wt% DOC-MWNTs increased by 140% and 65%, respectively, comparing to the pure PVA film. FT-IR, TEM, SEM, and DSC were used to investigate the MWNTs and PVA/MWNTs nanocomposites. The results show that the separately dispersed DOC-MWNTs filler throughout the PVA matrix and the strong adhesion between the DOC-MWNTs filler and the PVA matrix are responsible for the significant reinforcement of the mechanical properties of the composite prepared.  相似文献   

3.
Free standing structures of hypereutectic aluminum-23 wt% silicon nanocomposite with multiwalled carbon nanotubes (MWCNT) reinforcement have been successfully fabricated by two different thermal spraying technique viz Plasma Spray Forming (PSF) and High Velocity Oxy-Fuel (HVOF) Spray Forming. Comparative microstructural and mechanical property evaluation of the two thermally spray formed nanocomposites has been carried out. Presence of nanosized grains in the Al-Si alloy matrix and physically intact and undamaged carbon nanotubes were observed in both the nanocomposites. Excellent interfacial bonding between Al alloy matrix and MWCNT was observed. The elastic modulus and hardness of HVOF sprayed nanocomposite is found to be higher than PSF sprayed composites.  相似文献   

4.
Polypropylene (PP)/multi-wall carbon nanotubes (MWNTs) nanocomposites were prepared by diluting a PP/MWNT masterbatch by melt compounding with a twin screw extruder and prepared nanocomposites were characterized for their rheological, mechanical and morphological properties in terms of MWNT loading. The rheological results showed that the materials experience a fluid–solid transition at the composition of 2 wt.%, beyond which a continuous MWNT network forms throughout the matrix and in turn promotes the reinforcement. The tensile modulus and yield stress of the nanocomposites are substantially increased relative to the neat polypropylene. Nanotube reinforcement thus enhanced the yield stress, while reducing the ductility. The same behavior is observed in flexural tests. Charpy impact resistance of the notched samples increases slightly by the addition of MWNT, while impact resistance for the un-notched samples decreases with the addition of MWNTs. Finally, optimum in mechanical properties was observed at 2 wt.% MWNTs, which is near the rheological percolation threshold. From transmission electron microscopic (TEM) and scanning electron microscopy (SEM) images, it was observed that nanotubes are distributed reasonably uniformly indicating a good dispersion of nanotubes in the PP matrix. These results reveal that, preparation of nanocomposites from masterbatch dilution is an excellent method to obtain well-dispersed CNTs, while limiting the handling difficulties in plastics processing industrial workshops.  相似文献   

5.
Macroscopic textile preforms were produced with a multi-level hierarchical carbon nanotube (CNT) structure: nanotubes, bundles, spun single yarns, plied yarns and 3-D braids. The 3-D braided preform was the first of its kind produced by textile processing technique and used as a composite reinforcement consisting solely of carbon nanotubes. Four different epoxy systems that possessed a wide range of mechanical properties (owed to an added modifier) were infused into the CNT yarns and 3-D braids. Mechanical characterization of the resulting composites was conducted through the use of tensile testing. It was found that the tensile strength, stiffness and, especially, strain-to-failure values for each preform type were close regardless of the properties of the matrix whose strain-to-failure values ranged from 3.6% to 89%. This is hypothetically attributed to the nano-scale interaction between individual nanotubes and polymeric macromolecules in the composites. This hypothesis is validated by the Dynamic Mechanical Analysis results in Part II.  相似文献   

6.
This report describes the mechanical, thermal and biological characterisation of a solid free form microfabricated carbon nanotube-polycaprolactone composite, in which both the quantity of nanotubes in the matrix as well as the scaffold design were varied in order to tune the mechanical properties of the material. The creep and stress relaxation behaviour of the composite material was analysed to identify an optimal composition for bone tissue engineering. Moreover, the morphology and viability of osteoblast-like cells (MG63) on composite scaffolds were analysed using scanning electron microscopy and MTT assays. Our data demonstrate that by changing the ratio of CNT to PCL, the elastic modulus of the nanocomposite can be varied between 10 and 75 MPa. In this range, the geometry of the scaffold can be used to finely tune its stiffness. However our PCL-CNT nanocomposites were able to sustain osteoblast proliferation and modulate cell morphology. Thus we show the potential of custom designed CNT nanocomposites for bone tissue engineering.  相似文献   

7.
The potentiality of carbon nanotubes as reinforcement material is not only due to their exceptional high modulus, but also to their high aspect ratio. Indeed, the nanotubes contribution to the mechanical reinforcement in a polymer is strongly dependent on their distribution within the hosting matrix. In fact, the clustering of carbon nanotubes does limit the theoretical enhancement of the composite mechanical properties by a reduction of their effective aspect ratio.In this work, the reinforcement efficiency of carbon nanotubes having different aspect ratios has been experimentally investigated at low filler contents in an epoxy system. From a theoretical point of view, the classical theory (Cox, 1952 [25]) concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube Random Contact Model (Philipse, 1996 [33]) which explicitly accounts for the progressive reduction of the tubes effective aspect ratio as the filler content increases. The validity of the proposed model was assessed by a comparison with available literature data, providing a good agreement.  相似文献   

8.
The creep behaviour of poly(vinylidene fluoride) (PVDF)/multiwall carbon nanotubes nanocomposites has been studied at different stress levels and temperatures. To fine-tune the ability to transfer stress from matrix to carbon nanotubes, bud-branched nanotubes, were fabricated. The PVDF showed improved creep resistance with the addition of carbon nanotubes. However, bud-branched nanotubes showed a modified stress–temperature-dependent creep resistance compared with carbon nanotubes. At low stress levels and low temperatures, bud-branched nanotubes showed better improvement of the creep resistance than that of virgin carbon nanotubes, while at high stress levels and high temperatures, the virgin carbon nanotubes presented better creep resistance than that of bud-branched nanotubes. DSC, WAXD, and FTIR were employed to characterise the crystalline structures and dynamic mechanical properties were characterised by DMA testing. The Burgers’ model and the Findley power law were employed to model the creep behaviour, and both were found well describe the creep behaviour of PVDF and its nanocomposites. The relationship between the structures and properties was analysed based on the parameters of the modelling. The improved creep resistance for PVDF by the addition of nanotubes would benefit its application in thermoset composite welding technology.  相似文献   

9.
This paper describes a micromechanical finite element approach for the estimation of the effective Young’s modulus of single-walled carbon nanotube reinforced composites. These composite materials consist of aligned carbon nanotubes that are uniformly distributed within the matrix. Based on micromechanical theory, the Young’s modulus of the nanocomposite is estimated by considering a representative cylindrical volume element. Within the representative volume element, the reinforcement is modeled according to its atomistic microstructure while the matrix is modeled as a continuum medium. Spring-based finite elements are employed to simulate the discrete geometric structure and behavior of each single-walled carbon nanotube. The load transfer conditions between the carbon nanotubes and the matrix are modeled using joint elements of changeable stiffness that connect the two materials, simulating the interfacial region. The proposed model has been tested numerically and yields reasonable results for variable stiffness values of the joint elements. The effect of the interface on the performance of the composite is investigated for various volume fractions. The numerical results are compared with experimental and analytical predictions.  相似文献   

10.
《Composites Part A》2002,33(8):1033-1039
Poly(ether ether ketone) nanocomposites containing vapour-grown carbon nanofibres (CNF) were produced using standard polymer processing techniques. Evaluation of the mechanical composite properties revealed a linear increase in tensile stiffness and strength with nanofibre loading fractions up to 15 wt% while matrix ductility was maintained up to 10 wt%. Electron microscopy confirmed the homogeneous dispersion and alignment of nanofibres. An interpretation of the composite performance by short-fibre theory resulted in rather low intrinsic stiffness properties of the vapour-grown CNF. Differential scanning calorimetry showed that an interaction between matrix and the nanoscale filler could occur during processing. Such changes in polymer morphology due to the presence of a nanoscale filler need to be considered when evaluating the mechanical properties of such nanocomposites.  相似文献   

11.
In this study, randomly oriented single-walled carbon nanotubes (SWCNTs)/epoxy nanocomposites were fabricated by tip sonication with the aid of a solvent and subsequent casting. Two different curing cycles were used to study the role of the stiffness of the epoxy matrix on the tensile and thermal behavior of the composites. The addition of a small amount of SWCNTs (0.25 wt.%) in rubbery, i.e., soft matrices, greatly increased Young’s modulus and tensile strength of the nanocomposites. The results showed that the tensile properties of soft epoxy matrices are much more influenced by the addition of carbon nanotubes than stiffer ones. The significant improvement in tensile properties was attributed to the excellent mechanical properties and structure of SWCNTs, an adequate dispersion of SWCNTs by tip sonication, and a stronger SWCNT/matrix interfacial adhesion in softer epoxy matrices. A slight improvement in the thermal stability of the nanocomposites was also observed.  相似文献   

12.
Owing to their unique mechanical properties, carbon nanotubes are considered to be ideal candidates for polymer reinforcement. However, a large amount of work must be done in order to realize their full potential. Effective processing of nanotubes and polymers to fabricate new ultra‐strong composite materials is still a great challenge. This Review explores the progress that has already been made in the area of mechanical reinforcement of polymers using carbon nanotubes. First, the mechanical properties of carbon nanotubes and the system requirements to maximize reinforcement are discussed. Then, main methods described in the literature to produce and process polymer–nanotube composites are considered and analyzed. After that, mechanical properties of various nanotube–polymer composites prepared by different techniques are critically analyzed and compared. Finally, remaining problems, the achievements so far, and the research that needs to be done in the future are discussed.  相似文献   

13.
Use of carbon nanotubes as additives to composite parts for the purpose of increased damping has been the subject of much recent attention, owing to their large surface area per weight ratio which provides for frictional losses at the carbon nanotube–resin matrix interface. This article presents an experimental study to quantify the structural damping in composites due to the addition of carbon nanotubes to thermosetting resin systems with and without fiberglass reinforcement. Carbon nanotubes of varying quantity and morphology are ultrasonically dispersed in epoxy resin and are compression molded to form test samples that are used in forced vibration, free vibration with initial tip deflection, and tension tests to determine their damping ratio, specific damping capacity, and Young’s modulus. Results show increased stiffness and specific damping capacity with the addition of carbon nanotubes and particularly increased frictional loss with increasing surface area to weight ratio. The addition of fiberglass reinforcement to composite samples is shown to reduce the effective damping ratio over plain epoxy samples and carbon nanotube-filled epoxy samples.  相似文献   

14.
Functionalized single-wall carbon nanotubes (f-SWCN) are dispersed in chitosan films by self-assembly of both components in aqueous media. This carbon form is a promising nanofiller to achieve nanocomposites with refined thermal, mechanical and surface features. In this study, we investigated the influence of functionalized single-wall carbon nanotubes concentration on the resulting properties of the nanocomposites structures. Functionalized single-wall carbon nanotubes are dispersed on a molecular scale in the polymeric matrix due to electrostatic interactions between both components. The thermal and mechanical properties have been characterized by thermogravimetric analysis and dynamic mechanical analysis, respectively, while their wettability is studied by water contact angle measurements. Mechanical resistance of the films is improved up to 18 % with the addition of functionalized single-wall carbon nanotubes, but the thermal stability is expressively reduced. A decrease in the surface hydrophobicity of 25 % is obtained after the inclusion of the nanofiller.  相似文献   

15.
Poly(hexamethylene terephthalate) (PHT)/carbon nanotubes (CNT) nanocomposites containing 1% and 3% (w/w) of filler were prepared by two procedures: in situ ring-opening polymerization of hexamethylene terephthalate cyclic oligomers in the presence of CNT and melt blending of PHT/CNT mixtures. Arc discharge multiwalled carbon nanotubes, both pristine (MWCNT) and hydroxyl functionalized (MWCNT-OH), were used. The objective was to evaluate the effect of preparation procedure, nanotube side-wall functionalization and amount of nanotube loaded on properties of PHT. All nanocomposites showed an efficient distribution of the carbon nanotubes within the PHT matrix but interfacial adhesion and reinforcement effect was dependent on both functionalization and nanotubes loading. Significant differences in thermal stability and mechanical properties ascribable to functionalization and processing were observed among the prepared nanocomposites. All the prepared nanocomposites showed enhanced crystallizability due to CNT nucleating effects although changes in melting and glass transition temperatures were not significant.  相似文献   

16.
Due to their unique molecular structure, carbon nanotubes exhibit outstanding properties. They are regarded as ideal reinforcements of composites. In this paper, the effects of pinhole defects on mechanical properties are investigated for wavy carbon nanotubes based nanocomposites using 3-D Representative Volume Element with long carbon nanotubes. The carbon nanotubes are modeled as continuum hollow cylindrical shape elastic material with pinholes, having some curvature in its shape. These defects are considered on the single walled carbon nanotubes. The mechanical properties like Young’s modulus of elasticity are evaluated for various values of waviness index, as well as type and number of pinhole defects. The effects of interactions between both defects as well as their influence on the nanocomposites are studied under an axial loading condition. Numerical equations are used to extract the effective material properties for the different geometries of Representative Volume Elements with non-defective carbon nanotubes. The finite element method results obtained for non-defective carbon nanotubes are consistent with analytical results for cylindrical Representative Volume Elements, which validate the proposed model. It is observed that the presence of pinhole defects as well as waviness, can significantly reduces the effective reinforcement, when compared with nanotubes without pinhole defects and this reinforcement decreases with the increase of the number of pinhole defects.  相似文献   

17.
Polyurethane/carbon nanotube (PUR/CNTs) composites are much more functional than pure polyurethanes. High intensity ultrasonic agitation was applied while preparing a mixture of multiwall carbon nanotubes and a monomer. The monomer/MWNT complexes were used to prepare PUR/CNTs nanocomposites. This paper describes the application of quantitative image analysis to characterise the microstructure of the monomer and segmented polyurethane with carbon nanotubes (CNTs). Stereological parameters chosen for analysis were used to evaluate the CNTs' dispersion in the monomer complex and the degree of matrix phase separation in the nanocomposites examined. The nanoparticles induced changes in the structure of the hard and soft domains in the polyurethane matrix and influenced thermal and mechanical properties of the material. Due to the introduction of the nanotubes in the polyurethane matrix, the physical size and glass transition temperature of hard domains increased while the tensile strength and storage modulus decreased.  相似文献   

18.
Due to their high stiffness and strength, as well as their electrical conductivity, carbon nanotubes are under intense investigation as fillers in polymer matrix composites. The nature of the carbon nanotube/polymer bonding and the curvature of the carbon nanotubes within the polymer have arisen as particular factors in the efficacy of the carbon nanotubes to actually provide any enhanced stiffness or strength to the composite. Here the effects of carbon nanotube curvature and interface interaction with the matrix on the composite stiffness are investigated using micromechanical analysis. In particular, the effects of poor bonding and thus poor shear lag load transfer to the carbon nanotubes are studied. In the case of poor bonding, carbon nanotubes waviness is shown to enhance the composite stiffness.  相似文献   

19.
Because of their high mechanical strength, carbon nanotubes (CNTs) are being considered as nanoscale fibres to enhance the performance of polymer composite materials. Novel CNT-based composites have been fabricated using different methods, expecting that the resulting composites would possess enhanced or completely new set of physical properties due to the addition of CNTs. However, the physics of interactions between CNT and its surrounding matrix material in such nano-composites has yet to be elucidated and methods for determining the parameters controlling interfacial characteristics such as interfacial shear stress, is still challenging. An improvement of the physical properties of polymer nanocomposites, based on carbon nanotubes (CNTs), is addicted to a good dispersion and strong interactions between the matrix and the filler.  相似文献   

20.
Due to their outstanding mechanical, thermal, and durability properties, polymer matrix nanocomposites (PMCs) are currently a prominent area of research. The opportunity of applying PMCs in structural reinforcement and rehabilitation of damaged infrastructures, as well as working as a new structural material, justifies the increasing number of recent studies. In this review article, the effect of adding different reinforcements at nano-scale, such as carbon nanotubes, nanoclay, graphene, or nanosilica to polymer matrices, is discussed and the improvement in mechanical properties of PMCs is evaluated. Some concluding remarks and new perspectives on the use of PMCs in structures are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号