首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本研究在ZrO2基体表面涂覆一薄层Al2O3涂层, 利用基体与涂层之间热膨胀系数不匹配, 在Al2O3-ZrO2预应力陶瓷(简称ACZS预应力陶瓷)表层引入压应力。采用维氏压痕法评价残余应力对ACZS预应力陶瓷的表层和基体中裂纹扩展阻力的影响。理论分析结合实验结果表明: 表层的压应力使得ACZS预应力陶瓷的裂纹扩展阻力增大, 最终导致强度和损伤容限提高; 且ACZS预应力陶瓷表层的压应力和裂纹扩展阻力随着基体截面积与涂层截面积比值的增加而增大。当ZrO2基体表层的Al2O3涂层厚度为40 μm时, 表层压应力使ACZS预应力陶瓷的弯曲强度达到(1207±20) MPa, 相比于同种工艺下制备的ZrO2陶瓷强度提高了32%, 同时也是Al2O3强度的3倍。此外, ACZS预应力陶瓷也表现出很好的抗热震性能。  相似文献   

2.
A theoretical approach has been put forward for predicting the strengthening of materials by the introduction of surface compressive stresses. An approximate technique was used to determine the closure length of a linear surface crack which extends through the compressive surface layer. The stress intensity factor of the partially closed crack was then determined for the case of an applied tensile stress, with the assumption that the residual surface compressive stress was uniform within the surface layer (step function). The analysis shows that the strengthening depends on the magnitude and depth of the compressive surface stress. It is found that partial crack closure decreases the amount of strengthening compared with that predicted for an open crack, and that for large compressive surface stresses the amount of strengthening can saturate.  相似文献   

3.
We present predictions and measurements of fatigue crack growth rates in plastically bent aluminium 2024‐T351 beams. Beam bending and fatigue were carefully controlled to minimize factors other than residual stress that could affect the fatigue crack growth rate, such as large plastic strains or residual stress relaxation. The residual stress introduced by bending was characterized by a bending method and by the slitting method, with excellent agreement between the two methods. Crack growth rates were predicted by three linear elastic fracture mechanics (LEFM) superposition based methods and compared to experimental measurements. The prediction that included the effects of partial crack closure correlated with experimental data to within the variability normally observed in fatigue crack growth rate testing of nominally residual stress free material. Therefore, we conclude that crack growth through residual stress fields may be predicted using the concept of superposition as accurately as crack growth through residual stress free material, provided that the residual stress is accurately known, the residual stress remains stable during fatigue, the material properties are not changed by the introduction of residual stress, and that the effect, if any, of partial crack closure is taken into account.  相似文献   

4.
为研究由于材料固化产生的热残余应力对碳纤维增强环氧树脂复合材料横向拉伸性能预测结果的影响,发展了一种基于摄动算法的纤维和孔洞随机分布代表性体积单元(RVE)生成方法,建立更加接近真实材料微观结构的RVE模型。通过施加周期性边界条件,并赋予组分(纤维、基体和界面)材料本构关系,进而实现温度和机械荷载下模型的热残余应力和损伤失效分析。从结果中发现,材料固化过程会在纤维之间产生残余压应力,在模型孔隙周围产生沿加载方向的残余拉应力。所建立不含孔隙RVE模型的失效均是由于界面脱黏引起,材料固化在纤维之间产生的残余压应力会增加模型的预测强度。含有孔隙的RVE模型失效起始于孔隙周围的基体中,而材料固化在模型孔隙周围产生的热残余拉应力对含孔隙RVE模型预测的失效强度有降低作用。对于具有不同孔隙尺寸的RVE模型,模型的失效强度随着孔隙尺寸的增加而不断降低,但是热残余应力减弱了孔隙尺寸对模型预测结果的降低作用。对于具有不同长宽比椭圆形孔隙的RVE模型,热残余应力增加了孔隙长宽比对模型强度的降低作用。   相似文献   

5.
It is well known that residual stresses influence the ductile fracture behaviour. In this paper, a numerical study was performed to assess the effect of residual stresses on ductile crack growth resistance of a typical pipeline steel. A modified boundary layer model was employed for the analysis under plane strain, Mode I loading condition. The residual stress fields were introduced into the finite element model by the eigenstrain method. A sharp crack was embedded in the center of the weld region. The complete Gurson model has been applied to simulate the ductile fracture by microvoid nucleation, growth and coalescence. Results show that tensile residual stresses can significantly reduce the crack growth resistance when the crack growth is small compared with the length scale of the tensile residual stress field. With the crack growth, the effect of residual stresses on the crack growth resistance tends to diminish. The effect of residual stress on ductile crack growth resistance seems independent of the size of geometrically similar welds. When normalized by the weld zone size, the ductile crack growth resistance collapses into one curve, which can be used to assess the structural integrity and evaluate the effect of residual stresses. It has also been found that the effect of residual stresses on crack growth resistance depends on the initial void volume fraction f0, hardening exponent n and T-stress.  相似文献   

6.
The crack propagation under flexure in layered ceramics designed with strong interfaces and high compressive residual stresses is investigated by means of FE simulations and compared with experimental observations on Al2O3-ZrO2 multilayered ceramics. The change of crack propagation direction on the interface is assessed based on the strain energy density and maximum tangential stress criteria. The influence of the layer thickness on the crack propagation direction is evaluated. The estimated crack path (crack deflection angle) obtained through FE calculations is in agreement with the experimental observations. The results can be used for the design of layered ceramics with enhanced crack growth resistance.  相似文献   

7.
A layered graphitic CVD B-C coating was introduced between two CVD SiC coating layers. Microstructure and chemical characterization of the CVD B-C and the hybrid SiC/B-C/SiC multilayer coating was performed using SEM, EDS, XPS and XRD. Oxidation protection ability of the coating for the C/SiC composite was studied using a thermogravimetric analyzer (TGA) in the isothermal mode and by measuring residual flexural strength. The layered graphitic CVD B-C coating middle layer reduced the maximum crack width in the CVD SiC coating. The hybrid SiC/B-C/SiC multilayer coating provided a better oxidation protection for C/SiC composite than a three layer CVD SiC coating due to coating crack control and sealing effects at temperatures up to 1,300°C for 900 min.  相似文献   

8.
The main interest in this study is in the subcritical crack propagation and fracture of coated materials, specifically of cylindrical shells under repeated thermal shock. First it is shown that the circumferential crack problem in a cylindrical shell may be approximated by a plate on an elastic foundation under plane strain conditions. The thermal shock problem for a layered plate supported by an elastic foundation containing a crack in each layer of arbitrary sizes and locations is then considered. An additional factor studied is the influence of the cooling rate of the plate surface on the stress intensity factors at the crack tips. The problem is formulated in terms of a pair of singular integral equations which are solved for a number of typical crack geometries such as an edge crack, a crack terminating at the interface, an undercoat crack, and a crack crossing the interface. The main results of this paper are the stress intensity factors.  相似文献   

9.
Defects that form by mechanisms such as fatigue and stress corrosion cracking are influenced both by external loads on engineering structures and internal, residual stresses that are generated during the manufacture and operation. This paper describes a programme of experimental and analytical work on a high‐strength, low‐toughness aluminium alloy (AL2024‐T351) to assess the influence of residual stress on crack opening displacement (COD) and crack‐driving force (CDF) for a range of fatigue crack lengths in compact tension (CT) specimens containing a mechanically induced residual stress field. Comparison of experimentally measured and numerically predicted CODs, at the mid‐plane and surface of CT specimens, show generally good agreement for cracks introduced into the finite‐element model in a progressive, element‐by‐element manner. Cracks introduced in a simultaneous manner give larger than observed CODs. The CDFs for the progressively introduced crack are always smaller than for simultaneously introduced. These results have implications for the assessment of initiation for slowly growing cracks.  相似文献   

10.
The mechanics of high cycle fatigue crack nucleation (formation of a stable crack that can grow away from the influence of the notch root of the inclusion) at subsurface primary inclusions in carburized and shot-peened martensitic steel subjected to cyclic bending is investigated using three-dimensional (3D) finite element (FE) analysis. FE models are constructed using a voxellation technique to address the shape, size, and distribution of primary inclusions within clusters. The critical depth for fatigue crack nucleation is predicted considering the gradient in material properties arising from carburization, prestrain and compressive residual stress distribution due to shot peening, and the gradient of applied bending stress. The influence of inclusion shape and interface condition (intact or debonded) with the matrix on the driving force for fatigue crack nucleation is examined. It is observed that the inclusion shape has minimal influence on the predicted results while the effect of the interface condition is quite significant. For partially debonded interfaces, the predicted critical depth from surface for fatigue crack nucleation agrees qualitatively with experimental observations.  相似文献   

11.
The fatigue life of a welded aluminium T‐joint made from beams with rectangular hollow section (RHS) has been predicted using a crack propagation analysis and compared with experimental results from joints with different residual stress levels. To include the effect of the residual stresses, the stress ratio was calculated at the weld toe and, via Walker's equation, introduced into the analysis. How to obtain the Walker exponent has been discussed in detail. The introduction of a stress ratio at the weld toe provides good agreement between the experimentally and analytically found S–N curves. The effect of the residual stress was successfully included in the analysis.  相似文献   

12.
Mode I fracture behaviour of adhesively bonded double and cantilever beam (DCB) compact tension (CT) joints was studied using a rubber-modified epoxy (Araldite® GY260) as the adhesive. Adherends were prepared from a carbon fibre (CF)/epoxy composite or aluminium alloys. The crack path in the joints was studied based on the sign of the non-singularT-stress ahead of the crack tip by calculating the thermal residual stress in the joints using finite element analysis. The results indicate that the type of adherend materials influence the level of the thermal residual stress in the adhesive layer, which consequently causes different crack paths in the joints, i.e. a uniformly smooth fracture surface in both CT and DCB aluminium joints and a wavy crack growth in the DCB CF/epoxy composite joints. However, the fracture energies of different types of adhesive joints were almost identical to each other for bond thicknesst<0.2 mm, and a somewhat higher fracture resistance was obtained for the CF/epoxy DCB joints with large bond thickness.  相似文献   

13.
When the loading on a composite is sufficient to cause fracture of an individual fibre, the resulting stress amplification in the adjacent intact fibres may be large enough to cause failure of these fibres. In this work, 3D elasto-plastic finite element analysis was used to investigate the effect of inter-fibre spacing on the stress amplification factor in a composite comprising a planar array of fibres. A Progressional Approach was used in the FE analysis to simulate the constituent non-linear processes associated with the generation of thermal residual stresses from fabrication, the fibre fracture event and the subsequent initiation and propagation of conical matrix cracks induced with incremental tensile loading. As the inter-fibre spacing increases, the effect of fibre fracture on the stress distribution in the neighbouring intact fibres is reduced, whereas the effect on the matrix material is increased, thereby inducing localised yielding. The presence of a conical-shaped matrix crack was found to increase both the stress amplification factor and the positively affected length in neighbouring fibres. For a large inter-fibre spacing, a longer matrix crack is required to obtain good agreement with LRS measurements of fibre stress.  相似文献   

14.
In this study, the distribution of the thermal residual stresses due to the adhesive curing in bonded composite repair is analysed using the finite element method. The computation of these stresses comprises all components of the structures: cracked plate, composite patch and adhesive layer. In addition, the influence of these residual stresses on the repair performance is highlighted by analysing their effect on the stress intensity factor at the crack tip. The obtained results show that the normal thermal stresses in the plate and the patch are important and the shear stresses are less significant. The level of the adhesive thermal stresses is relatively high. The presence of the thermal stresses increases the stress intensity factor at the crack tip, what reduce the repair performance.  相似文献   

15.
This work is devoted to the analysis of the effectiveness of interlayers with linearly graded composition for thermal stress reduction by using a model with closed-form analytical solution. Parameters of effective coefficient of thermal expansion, effective bending moment and effective flexural rigidity of section are introduced to facilitate the analysis. It is concluded that whether of not interlayers are useful depends on the materials' stiffness combination of the layered system. When the difference of the biaxial elastic modulus of each layer is large in the bilayer system, linearly graded interlayers do not reduce the thermal stress. The effectiveness of interlayers for curvature reduction in the bilayer system is also dependent on the materials' combination in the original layers.  相似文献   

16.
Important features of the ESP (engineered stress profile) glasses are the crack arrest and multiple cracking phenomena that occur even in an unstable stress field. In this work a detailed “in situ” observation of crack observation and analysis was performed with the aim to examine crack propagation in detail and relate it to the residual stress field produced by ion exchange and to the final mechanical performances of the material. The results showed that the peculiar residual stress field with a maximum below the surface is responsible for the formation of a multitude of stable cracks on the tensile surface of the glass that evolved into through-thickness flaws. The propagation within the material is limited by the increasing compressive residual stress, which also leads to kinking of the cracks in a direction parallel to the surface. The observed fracture phenomena are also responsible for a shielding effect that makes the measured failure resistance of ESP glass larger than predicted by simplistic single crack models.  相似文献   

17.
The presence of hard alpha (HA) anomalies in titanium alloys represents a significant potential degradation to gas turbine component performance. Although HA defects in titanium alloys are rare, when they are present, they can crack and ultimately result in failure. In static fracture and fatigue test specimens, embedded HA defects had significantly higher fracture strengths than anticipated. The objective of this work was to determine if residual stresses caused by thermal expansion mismatch during material fabrication were the cause of the observed behaviour. The residual stress fields in and around surface and embedded HA particles in Ti–6Al–4V (Ti–6–4) were determined using an elasticity solution and measured coefficient of thermal expansion (CTE) data. The calculated stress distributions serve as the foundation for comparisons of the local stress and the fracture strength, the stress intensity factor K and the crack growth threshold ΔKth, with the experimentally determined fatigue lives. The analytical results indicated that CTE‐induced residual stress around HA particles can contribute to the fatigue strength of Ti–6–4 by delaying microcracking of HA anomalies and reducing the driving force (effective ΔK) of the fatigue crack. Based on the analysis results, the differences between the surface and subsurface results as well as the difference between predicted and measured fatigue lives could be largely attributed to the residual stress effects caused by the mismatch of the particle and matrix properties.  相似文献   

18.
A model to predict transverse cracking in cross-ply laminates in the presence of residual thermal stresses is developed here. This model is based on the coupled criterion of the finite fracture mechanics. This criterion has been successfully used for different materials, structures and scales to predict crack initiation. It is based on two main hypotheses: (i) crack initiation occurs as a finite-length crack onset and (ii) the crack onset requires that both stress and energy criteria are fulfilled simultaneously. The present model is developed under the generalized-plane-strain hypotheses combining the results obtained using the laminate theory and a boundary element code. The present analysis shows that the residual thermal stresses affect both the stress and the energy criteria in the form of adding a residual elastic-strain to the strain imposed by external mechanical loads. An explicit expression for this residual elastic-strain is provided. For certain composite materials as carbon/epoxy the value of this residual elastic-strain is shown to be relatively large in comparison with the nominal critical transverse strain of the material. The comparison with experiments shows that considering the residual thermal stresses using the strategy proposed here improves drastically the accuracy of the model predictions.  相似文献   

19.
The aim of the work was to optimize the processing parameters for fabricating laminated ceramic composites of Al2O3–Y–PSZ. Composites of different layer thicknesses, starting from 2 mm and going down up to 0·3 mm, were made by hot-pressing. The different types of cracks originating in the composite were studied in detail and the reason behind their formation analysed. The observed main reasons for crack formation were: (i) differential shrinkage in between the co-sintering layers due to their different sintering kinetics, (ii) thermal expansion mismatch, and (iii) a tensile component of the residual stress in the layer under residual compressive stress. After this defect analysis, suitable remedial measures were taken to avoid the crack formation. And finally a laminated composite with fifteen layers of 0.3 mm thickness was made successfully.  相似文献   

20.
Layered composite using monolithic Si3N4 as outer layers and Si3N4-15v/o TiC as inner core was fabricated by slip casting and pressureless sintering. As the composite is cooled from high sintering temperature, the difference in coefficients of thermal expansion between the constrained inner core and outer layer is expected to establish a compressive surface stress. The existence of this residual stress was verified by theoretical analysis and Vicker's indentation for the samples with various outer layer thickness. The layered composites exhibited greater strength, apparent fracture toughness and damage resistance due to the presence of compressive surface stresses in the layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号