首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A new type of hybrid SiC foam–SiC particles–Al composites (VSiC = 53, 56.2 and 59.9%) to be used as an electronic packaging substrate material were fabricated by squeeze casting technique, and their thermal expansion behavior was evaluated. The coefficients of thermal expansion (CTEs) of the hybrid composites in the range of 20–100 °C were found to be between 6.6 and 7.7 ppm/°C. The measured CTEs are much lower than those of SiC particle-reinforced aluminum (SiCp–Al) composites with the same content of SiC because of the characteristic interpenetrating structure of the hybrid composites. A material of such a low CTE is ideal for electronic packaging because of the low thermal mismatch (and therefore, low thermal stresses) between the electronic component and the substrate. To achieve similar CTEs in SiCp–Al composites, the volume fraction of SiC would be much higher than that in the hybrid composites.  相似文献   

2.
《Composites Part A》2003,34(11):1023-1027
With mixing different sized SiC particles, high reinforcement content SiCp/Al composites (Vp=50, 60 and 70%) for electronic packaging applications were fabricated by squeeze casting technology. The composites were free of porosity and SiC particles distributed uniformly in the composite. The mean linear coefficients of thermal expansion (20–100 °C) of SiCp/Al composites ranged from 8.3 to 10.8×10−6/°C and decreased with an increase in volume fraction of SiC content. The experimental coefficients of thermal expansion agreed well with predicted values based on Kerner's model. The Brinell hardness increased from 188.6 to 258.0, and the modulus increased from 148 to 204 GPa for the corresponding composites. The bending strengths were larger than 370 MPa, but no obvious trend between bending strength and SiC content was observed.  相似文献   

3.
Recently, polymer composites reinforced with low fractions of thermomiotic nanoceramics have triggered a lot of research. The efforts have been focused on achieving considerable reduction of the coefficient of thermal expansion (CTE) of polymeric materials without deterioration of other physical properties. In this context, polyethylene (PE) composites reinforced with different loads of Al2Mo3O12 nanofillers (0.5–4 mass %) were fabricated by micro-compounding. To enhance the interfacial interaction between the two components, chemical functionalization of Al2Mo3O12 was performed with vinyltrimethoxysilane (VTMS) prior to micro-compounding. Infrared spectroscopy and thermogravimetry demonstrated the successful grafting of VTMS on the Al2Mo3O12 surface. The composites showed strongly decreased CTEs, up to 46 % reduction for loadings of 4 mass % compared with neat PE, suggesting intimate filler–matrix interactions. The variation of CTEs of the composites in terms of the filler fraction was successfully described by Turner’s model allowing calculation of the bulk modulus of monoclinic Al2Mo3O12 (13.6 ± 2.6 GPa), in agreement with the value obtained by an ultrasonic method. The thermal stability of the composites was improved, although the addition of functionalized fillers decreased the degree of crystallinity of the PE to a small extent. The Young’s modulus and yield strength of the composites increased from 6.6 to 19.1 % and 4.0–6.0 %, respectively, supporting the existence of strong filler–matrix interactions, contributing to an efficient load transfer. Finite element analysis of thermal stresses indicated absence of plastic deformation of the matrix or fracture of the nanofillers, for a 100 K temperature drop.  相似文献   

4.
The coefficients of thermal expansion (CTEs) of 20 vol% SiCp/Al composites fabricated by powder metallurgy process were measured and examined from room temperature to 450 °C. The SiC particles are in three nominal sizes 5, 20 and 56μm. The CTEs of the SiCp/Al composites were shown to be apparently dependent on the particle size. That the larger particle size, the higher CTEs of the composites, is thought to be due to the difference in original thermal residual stresses and matrix plasticity during thermal loading. At low temperature, the experimental CTEs show substantial deviation from the prediction of the elastic analysis derived by Kerner and rule of mixture (ROM), while the Kerner’s model agrees relatively well at high temperatures for the composite with the larger particle size.  相似文献   

5.
Abstract

The characterisation of thermal expansion coefficient and thermal conductivity of Al–Si matrix alloy and Al–Si alloy reinforced with fine SiCp (5 and 20 wt-%) composites fabricated by stir casting process are investigated. The results show that with increasing temperature up to 350°C, thermal expansion of composites increases and slowly reduces when the temperature reaches to 500°C. The values of both thermal expansion and conductivity of composites are less than those for Al–Si matrix. Microstructure and particles/matrix interface properties play an important role in the thermal properties of composites. Thermal properties of composites are strongly dependent on the weight percentage of SiCp.  相似文献   

6.
The aim of this study is to investigate the reinforcing effect of woven and unidirectional glass fibers and the effect of post-curing on the flexural strength and flexural modulus of glass fiber-reinforced composites. A series of composites containing 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)-phenyl]propane and triethyleneglycol dimethacrylate matrices and different reinforcements of unidirectional or woven glass fibers were prepared. The samples, 25 × 2 × 2 mm, were cured with a halogen curing lamp, followed by additional curing by thermal treatment at 135 ± 5 °C temperature and 60 psi pressure. Samples were tested before and after post-curing in order to determine the flexural strength and flexural modulus. The degree of reinforcement with glass fibers was varied between 14 and 57 wt% or 7.64 and 38.44 vol% by changing the number of unidirectional bundles or woven glass fiber bands in the composites, respectively. The obtained flexural strength values were in the range of 95.20–552.31 Mpa; the flexural modulus ranged between 2.17 and 14.7 GPa. The highest flexural strength and flexural modulus values were recorded for samples with unidirectional glass fibers. The mechanical qualities of the glass fibers-reinforced composites increased after post-curing treatment. Increasing of the glass fiber amount in the experimental composites improves both flexural strength and modulus. SEM micrographs of fractured composites indicate a strong interfacial interaction between the glass fibers and the polymer matrix.  相似文献   

7.
This article studied the effect of phase transformation on the thermal expansion property in Al/ZrW2O8 composites. The Al/ZrW2O8 composites of low-thermal expansion were fabricated by a squeeze casting method. The coefficient of thermal expansion (CTE) of as-made composites was discovered sharply increased at around 130 °C. The X-ray diffraction (XRD) spectra showed the existence of high-pressure γ-phase in the as-made composites. This high-pressure γ-phase was considered to be induced by the compressive residual stress originated from the thermal mismatch between Al matrix and ZrW2O8 particles. The in situ high-temperature XRD and the differential scanning calorimetry technique were used to study this thermally expanded abruption phenomenon. It was found that the phase transformation from high-pressure γ-phase to the low-pressure phases (α/β phase) in the composites should be responsible for fluctuation in the CTE of composites. Furthermore, using a proper heat treatment to eliminate the high-pressure phase in the composite, the Al/ZrW2O8 composites of low and uniform CTE (from 20 to 200 °C) could be achieved. And when temperature increased again, the thermal mismatch stresses between the metal matrix and ceramic particles in the composite were not large enough to re-induce the α-γ transformation.  相似文献   

8.
Pre-treated Si powder (Sip) and 6061Al powder were used to fabricate high-fraction Sip/6061Al composites via pressureless sintering, and the effects of the Sip content and the sintering temperature on the microstructures and properties of the composites were studied. The results show that in the composites, there exist MgAl2O4 nanocrystalline particles, and the Si phase varied from a discontinuous particulate state to a semi-continuous skeleton state as the Si content increased from 30 to 50?wt-%. Densities, bending strengths, hardness, and thermal conductivities of the composites all increased initially and then decreased with the sintering temperature. The 680°C sintered 30?wt-% Sip/6061Al composites and the 700°C sintered 50?wt-% Sip/6061Al composites have the optimal mechanical and thermophysical properties.  相似文献   

9.
A chromium carbide coating was synthesized onto graphite fibers by molten salts method to improve the interfacial bonding and thermal properties of short graphite fiber/Al composites which were fabricated by vacuum pressure infiltration technique. The graphite fiber/Al composites with different thicknesses of chromium carbide coatings were prepared through varying plating times to investigate the influence of chromium carbide layer on the microstructures and thermal properties of the composites. The combined Maxwell–Garnett effective medium approach and acoustic mismatch model schemes were used to theoretically predict thermal conductivities of the composites. The results indicated that the chromium carbide coating formed on graphite fiber surface in molten salts consists mainly of the Cr7C3 phase. The Cr7C3-coating layer with plating time of 60 min and thickness of 0.5 μm was found to be most effective in improving the interfacial bonding and decreasing the interfacial thermal resistance between graphite fiber and aluminum matrix. The 40 vol% Cr7C3-coated graphite fiber/Al composite with Cr7C3 thickness of 0.5 μm exhibited 45.4 % enhancement in in-plane thermal conductivity of 221 W m?1 K?1 compared to that of uncoated composite, as well as the coefficient of thermal expansion of 9.4 × 10?6 K?1, which made it as very interesting material for thermal management applications.  相似文献   

10.
The reaction path of the (Ti0.9, Mo0.1)2AlC phase from Ti, Al, TiC and Mo powder mixtures was investigated in detail ranging from 500 to 1450°C, and the results show that the reaction between Ti and Al produced Ti–Al intermetallics, and the reaction between Al and Mo formed Mo–Al intermetallics. And then the (Ti0.9, Mo0.1)2AlC phase was formed by the reaction of Ti–Al, Mo–Al intermetallics, and TiC. At 1350°C for 2?h, a dense (Ti0.9, Mo0.1)2AlC phase with purity was successfully fabricated. The Vickers hardness, flexural strength and fracture toughness were 5.48?GPa, 363.60?MPa and 5.78?MPa m1/2, which were improved by 44, 34 and 136% for (Ti0.80, Mo0.20)2AlC, respectively, compared with the single-phase Ti2AlC.  相似文献   

11.
Carbon fiber reinforced AZ91D matrix composites with pyrolytic (PyC) coating deposited on fiber surface (PyC-Cf/AZ91D composites) have been fabricated by Liquid-solid extrusion following vacuum pressure infiltration technique (LSEVI). Interfacial microstructure and failure behavior of the composites were investigated. Instead of interfacial reaction products, block-shaped interfacial precipitates Mg17Al12 were detected at the interface, which indicates that interfacial reaction was restrained by LSEVI and PyC coating. Nano-MgO was detected at the interface. Interfacial failure behavior of the PyC-Cf/AZ91D composites, which was the failure between PyC coating and AZ91D alloy due to the mismatch of thermal expansion and relatively poor bonding, was proposed. Fracture surface of the PyC-Cf/AZ91D composites was characterized by fibers pulling-out tests. PyC coating served not only as protection to the fibers, but also an adjustment of the interface of the composites.  相似文献   

12.
《Materials Research Bulletin》2013,48(11):4811-4817
Graphite fiber reinforced Cu-based composites have good thermal conductivity, low coefficient of thermal expansion for heat sink applications. In these composites, the quality of interfacial bonding between the copper matrix and the graphite fibers has significant influence on the thermal properties of composites. In this study, two different carbide coatings (Mo2C or TiC) were synthesized on graphite fiber to promote the interfacial bonding in composites. Fibers/Cu composites had been produced by spark plasma sintering process. The results showed that the densification, interfacial bonding and thermal conductivity of coated composites were improved distinctly compared to that of uncoated ones. The enhanced composites present 16–44% increase of thermal conductivity in XY plane. An original theoretical model was proposed to estimate the interface thermal resistance. The result showed that the interfacial thermal resistance was largely reduced by one order of magnitude with the introduction of carbide interlayer.  相似文献   

13.
SiCp/TiNif/Al composite with 20 Vol.% TiNi fibers were fabricated by pressure infiltration method. The effect of volume fraction of SiC particle on the mechanical properties and damping capacity of the composite were studied. Four different volume fractions of SiC particle in the composite were 0%, 5%, 20% and 35% respectively. The microstructure and damping capacity of the composites was studied by SEM and DMA respectively. As the gliding of dislocation in the Al matrix was hindered by SiC particle, the yield strength and elastic modulus of the composites increased, while the elongation decreased with the increase in volume fraction of SiC particle. Furthermore, the damping capacity of the composites at room temperature was decreased when the mount of strain was more than 1 × 10−4. In the heating process, the damping peak at the temperature of 135 °C was attributed to the reverse martensitic transformation from B19′ to B2 in the TiNi fibers.  相似文献   

14.
SiC short fibers, with an average diameter of 13 μm, length of 300–1,000 μm and chopped from SiC continuous fibers, were surface modified by the semi-solid mechanical stirring method to produce a discrete coating of aluminum particles. Then the starting mixtures, which consist of SiC short composite fibers, aluminum powder less than 50 μm and α-SiC powder of an average diameter of 0.6 μm, were mechanically mixed in ethanol for about 3 h, dried at 80 °C in air, and hot pressed under 30 MPa pressure at 1,650, 1,750 and 1,850 °C with 1 h holding time to prepare SiCf/SiC composites. Volume fraction of SiC short fibers in the starting powder for SiCf/SiC composites was about 25 vol.%. The composites were characterized in terms of bulk density, phase composition, and mechanical properties at room temperature. In addition, the distribution of SiC short fibers in the matrix and the cracking pattern in the composites were examined by optical microscope. Fracture surface of the composites were performed by a scanning electron microscope (SEM). The effect of hot-pressing temperature on bulk density and mechanical properties was investigated. The results indicated that SiC short fibers were uniformly and randomly distributed in the matrix, bending strength and bulk density of the composites increased with increasing sintering temperature. The composite, hot-pressed at 1,850 °C, exhibited the maximum bulk density and bending strength at room temperature, about 3.01 g/cm3 and 366 MPa, respectively. SEM analyses showed that there were a few of fiber pullout on the fracture surface of samples sintered at 1,650 °C and 1,750 °C, which was mainly attributed to lower densities. But few of fiber pullout was observed on the fracture surface of sample sintered at 1,850 °C, the combined effects of high temperature and a long sintering time were considered as a source of too severe fiber degradation because of the large amount of oxygen in the fibers.  相似文献   

15.
In the present study, a micromechanics model is proposed to predict the coefficients of nonlinear thermal expansion (CTEs) of fiber-reinforced composites. The influence of fiber aspect ratio on the CTEs is also investigated. It is noted that the parameters of fiber aspect ratio have a significant effect on both the longitudinal CTEs and transverse CTEs. The CTEs of composites are also very sensitive to the different fiber volume fractions. Moreover, the Young’s modulus and Poisson’s ratio of composites are taken into account in the present analysis. The theoretical derivations are applicable for the composites under mechanical or thermal environment conditions. The present model offers a direct prediction of CTEs and can account for the effects of fiber aspect ratio and volume fractions.  相似文献   

16.
Fully dense carbon fiber-reinforced copper and aluminum matrix (Cu–CF and Al–CF) composites were fabricated by hot press without the need for an interfacial chemical compound. With 30 vol% carbon fiber, the thermal expansion coefficients (TECs) of pure Cu and Al were decreased to 13.5 × 10?6 and 15.5 × 10?6/K, respectively. These improved TECs of Cu–CF and Al–CF composites were maintained after 16 thermal cycles; moreover, the TEC of the 30 vol% Cu–CF composite was stable after 2500 thermal cycles between ?40 and 150 °C. The thermal strain caused by the TEC mismatch between the matrix and the carbon fiber enables mechanical enhancement at the matrix/carbon fiber interface and allows conservation of the improved TECs of Cu–CF and Al–CF composites after thermal cycles.  相似文献   

17.
《Composites Part A》2005,36(3):327-338
In this work, the elastic properties and coefficients of thermal expansion of T650-35, M40J and M60J graphite fibers were determined from the macroscopic properties of either unidirectional and/or woven composites of these fibers embedded in polyimide resins. The T650-35 fibers were embedded in a PMR-15 matrix, whereas the M40J and M60J fibers were embedded in a PMR-II-50 polyimide. The three-component oscillator resonance method was employed to determine the elastic properties of the unidirectional and woven composites and their neat resins. The macroscopic coefficients of thermal expansion of the composites and the neat resins were measured by length dilatometry. Subsequently, the fiber properties were calculated from the unidirectional composite macro-data using the Eshelby/Mori-Tanaka approach. For the woven composites, a finite element approach based on the concept of a representative volume element was employed to determine the elastic and thermal properties of the fibers. In the case of the T650-35 fibers, both the longitudinal and transverse elastic and thermal properties of the fibers determined from the unidirectional and woven composites agreed very well with each other. However, for the M40J fibers, noticeable differences were observed between the fiber properties determined from the unidirectional and woven system, which was attributed to the lack of transverse isotropy of the unidirectional system. Since the properties of the M60J fibers were evaluated only from the woven system no direct comparison could be made between the properties obtained from the unidirectional and woven composite architectures. Overall, the methodology was shown to be highly applicable for the accurate determination of fiber properties from both unidirectional and woven systems.  相似文献   

18.
Glass fiber reinforced polymetalphosphate matrix composites prepared by a simple process displayed excellent thermal insulating and mechanical properties. Low-viscous Al3Cr(H2PO4)x=9,12 binders were prepared by dissolving Al(OH)3 and Cr(OH)3 or CrO3 in 85% phosphoric acid, and mixed with Al2O3 and Cr2O3 fillers. The glass fiber pre-pregs impregnated by the binder solution were laid-up and cured at 150–200 °C for 12 h under pressure, which are similar conditions to those used for carbon fiber/phenolic resin matrix composites. The composites cured using the hot-press or autoclave showed outstanding hygroscopic resistance even after standing in air for 30 days, due to the chemical stability of the cured network. Hot-press cured composites with higher density exhibited maximum flexural strengths of 155 MPa and thermal conductivity in the range 1.12–3.45 W/mK, while the porous autoclave cured composites displayed 60–77 MPa and 0.4–0.6 W/mK, respectively.  相似文献   

19.
依据复合材料内部纤维在基体内的排布规律及层合板铺层特性,基于多尺度方法,建立单层板和层合板代表性体积单元(RVE)模型,施加相应的边界条件,预测单层板的热膨胀系数和工程常数,进而预测复合材料层合板各向异性的等效热膨胀系数。通过与实验数据对比发现,基于正六边形单层板RVE模型预测的热膨胀系数,相比理论预测值,整体更接近实验值,其中预测的单向T300/5208碳纤维增强环氧树脂基复合材料、P75/934碳纤维增强环氧树脂基复合材料和C6000/Pi碳纤维增强环氧树脂基复合材料的横向热膨胀系数与实验结果的误差分别只有3%、1%和2%;采用单层板RVE预测的单向ECR/Derakane 510C玻璃纤维增强乙烯基酯树脂基复合材料的工程常数与实验值最大相差7.5%;层合板RVE模型预测的正交AS4/8552碳纤维增强环氧树脂基复合材料厚度方向的热膨胀系数与实验结果误差可以忽略,只有0.08%。最后以大型复合结构常用的正交铺层结构为研究对象,基于给出的单层板和层合板RVE模型预测了不同铺层复合材料烟道层合板的等效热膨胀系数,环向铺层比例对厚度方向的热膨胀系数影响较小。   相似文献   

20.
The oxidation of a Mo(Si,Al)2-based composite is investigated in the temperature range 900–1600 °C in dry air. Exposure time was 72 h. Comparisons are made with the oxidation behavior of a conventional MoSi2-based material. Cross-sections are examined with scanning electron microscopy and transmission electron microscopy; the phase composition is analyzed by X-ray diffraction and convergent beam electron diffraction. The material forms a continuous external α-alumina scale throughout the temperature range. Below the scale, there is a continuous Mo5(Si,Al)3 layer that overlies Mo(Si,Al)2 in the bulk. The Mo(Si,Al)2 phase immediately beneath the Mo5(Si,Al)3 layer is depleted in Al. No indications of MoO3 volatilization could be found for the Mo(Si,Al)2 material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号