首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interfacial microstructure and the kinetics of interfacial reaction between the eutectic Sn-Pb solder and electroplated Ni/Pd on Cu substrate (Cu/Ni/NiPd/Ni/Pd) were studied both in the liquid- and solid-state of the solder. The liquidstate reaction was carried out at 200°C, 225°C, and 250°C for 30 s, 60 s, 150 s, and 300 s at each temperature. The solid-state aging was carried out at 125°C for up to 43 days. The interfacial microstructure was characterized by imaging and energy dispersive x-ray analysis in scanning electron microscope. Depending on the thickness of the Pd-layer, both PdSn4 and PdSn3 phases were observed near the solder-substrate interface. These results were correlated with the initial thickness of the Pd-layer and the diffusion path in the calculated Pd-Pb-Sn isothermal sections. For the aforementioned isothermal reactions, only one Ni-bearing intermetallic (Ni3Sn4) was observed at the solder-substrate interface. The presence of Ni3Sn4 intermetallic was consistent with the expected diffusion path based on the calculated Ni-Pb-Sn isothermal sections. Selective etching of solder revealed that PdSn4 and PdSn3 had a faceted rod morphology, and Ni3Sn4 had a faceted scallop morphology which gave rise to rugged Ni3Sn4-solder interface. Segregation of Pb on the facets of PdSn4 and PdSn3 was also observed. The growth kinetics of the Ni3Sn4 intermetallic layer at the solder-substrate interface was analyzed using an Arrhenius-type of equation. In the thickness regime of 0.16 to 1.2 μm, the growth kinetics yielded a time exponent n=3.1, an apparent activation energy of 9260 J/mol both in the liquid- and solid-state of the solder, and a temperature dependent pre-exponential factor. The latter was attributed to the presence of one or more phases ahead of the growing layer.  相似文献   

2.
The relationship between microstructure and fatigue crack growth behavior was examined at Sn-Ag solder interfaces on copper and electroless-nickel metallizations. On copper metallization, the solder interface was lined with a coarse Ag3Sn intermetallic phase in addition to the Cu6Sn5 intermetallic and the adjacent solder alloy contained nodular Ag3Sn phase. This interfacial microstructure was shown to result in inferior fatigue resistance, with the fatigue crack path following the interfacial Ag3Sn intermetallic phase. In contrast, the solder interface on the electroless-nickel metallization was covered with a thin layer of Ni3Sn4 intermetallic phase, and the solder microstructure was composed of fine needles of Ag3Sn phase dispersed in the Sn-rich matrix. This solder interface was found to be significantly more resistant to fatigue than the copper/Sn-Ag solder interface.  相似文献   

3.
The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1−x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1−x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1−y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1−y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016−1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.  相似文献   

4.
Single shear lap joints were made with four different solders, Sn-Pb and Sn-Ag eutectic solders, and their composites containing about 20 vol.% in-situ Cu6Sn5 intermetallic phases about 3–8 micrometers in diameter. Two sets of experiments were performed: In the first set, all of the above four solder joints were aged at 150°C for periods ranging to 5000 h and the intermetallic growth was monitored periodically. In the second set, each of the above four solder joints was aged at five different temperatures for 4000 h. The interfacial layers between solders and the Cu substrate were examined using optical and scanning electron microscopy. The growth kinetics of intermetallic interfacial layers formed between solder and Cu substrate was characterized. The effect of in-situ Cu6Sn5 intermetallic phases on the growth rate is discussed. The growth rate of the intermetallic layers in the eutectic Sn-Pb composite was slower for the first 150 h as compared to the eutectic Sn-Pb non-composite. The growth rate of the intermetallic layers were similar for both the eutectic Sn-Ag and eutectic Sn-Ag composite throughout the aging duration. The activation energies for Cu6Sn5 layer growth for the eutectic Sn-Pb and Sn-Ag solder joints are evaluated to be 111 kJ/mol and 116 kJ/mol, respectively. The eutectic Sn-Pb and Sn-Ag composite solder joints exhibit higher activation energies of 161 kJ/mol and 203 kJ/mol.  相似文献   

5.
This study investigates the interfacial reactions between electroless Ni-Cu-P deposit and 63Sn-37Pb solder bumps under various reflow conditions. The morphology of the intermetallic compounds formed at the Ni-Cu-P/Sn-Pb interface changes with respect to reflow cycle, reflow temperature, and reflow time. The (Ni,Cu)3Sn4 compounds with three different morphologies of fine grain, whisker, and polygonal grain form at the Ni-Cu-P/Sn-Pb interface after reflow at 220°C for 15 s. The whisker-shape and polygonal grains detach from the Ni-Cu-P deposit into the Sn-Pb solder during multiple reflows. The (Ni,Cu)3Sn4 compound grows rapidly when the reflow temperature is above the Ni-Sn eutectic temperature, 231°C. A continuous (Ni,Cu)3Sn4 layer forms after reflow at 220°C for 10 min. A 4.5 μm Ni-Cu-P deposit prevents the interdiffusion of Sn and Al atoms across the Ni-Cu-P deposit after 10 reflow cycles at 220°C for 15 s and after reflow at 220°C for 10 min.  相似文献   

6.
Increasing environmental concerns and pending government regulations have pressured microelectronic manufacturers to find suitable alternatives to Pb-bearing solders traditionally used in electronics packaging. Over recent years, Sn-rich solders have received significant attention as suitable replacements for Pb-bearing solders. Understanding the behavior of intermetallics in Sn-rich solders is of particular concern as the microelectronics industry progresses towards Pb-free packaging. The formation of intermetallic compounds results from the reaction of the solder with the metallization on the substrate in the electronic package. While the presence of the intermetallic is an indication of good wetting, excessive growth of the intermetallic can have a dramatically adverse effect on the toughness and reliability of the solder joint. Understanding their fracture behavior will lend insight to their reliability under mechanical and thermomechanical strains.We investigated the intermetallic compound growth associated with Sn-0.7Cu and Sn-4.0Ag-0.5Cu solders on Ni-Au, Ni-Pd, and Cu substrates. (Ni,Cu)3Sn4 was present at the Ni interface for both solders but was coarser in the case of Ni-Pd. Cu6Sn5 and Cu3Sn were observed for both solder types. The Cu3Sn layer was similar in thickness and appearance for both solders, but the Cu6Sn5 was smoother and rounder in the case of Sn-0.7Cu. Additional time above liquidus resulted in growth of the Cu6Sn5 layer and eventual spalling of the IMC grains. The effect of the intermetallic on the toughness (KQ) of the solder joint was investigated using a modified compact tension specimen. Typical failure modes included bulk solder failure, intergranular separation, and intermetallic fracture, or cleavage. In some cases, additional time above solder liquidus was used to shift the dominant failure mode from that dominated by the bulk solder to interfacial delamination through the intermetallics. Solder joint fracture toughness was different between Ni-Sn and Cu-Sn interfacial intermetallics and was also affected by the relative intermetallic thickness. The relationship between solder and intermetallic microstructure and mechanical properties is discussed.  相似文献   

7.
Several international legislations recently banned the use of Pb because of environmental concerns. The eutectic Sn-Ag solder is one of the promising candidates to replace the conventional Sn-Pb solder primarily because of its excellent mechanical properties. In this study, interfacial reaction of the eutectic Sn-Ag and Sn-Pb solders with Ni/Cu under-bump metallization (UBM) was investigated with a joint assembly of solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. After reflows, only one (Ni,Cu)3Sn4 intermetallic compound (IMC) with faceted and particlelike grain feature was found between the solder and Ni. The thickness and grain size of the IMC increased with reflow times. Another (Cu,Ni)6Sn5 IMC with a rod-type grain formed on (Ni,Cu)3Sn4 in the interface between the Sn-Pb solder and the Ni/Cu UBM after more than three reflow times. The thickness of the (Ni,Cu)3Sn4 layer formed in the Sn-Pb system remained almost identical despite the numbers of reflow; however, the amounts of (Cu,Ni)6Sn5 IMC increased with reflow times. Correlations between the IMC morphologies, Cu diffusion behavior, and IMC transformation in these two solder systems will be investigated with respect to the microstructural evolution between the solders and the Ni/Cu UBM. The morphologies and grain-size distributions of the (Ni,Cu)3Sn4 IMC formed in the initial stage of reflow are crucial for the subsequent phase transformation of the other IMC.  相似文献   

8.
Nickel-based under-bump metallization (UBM) has been widely used in flip-chip technology (FCT) because of its slow reaction rate with Sn. In this study, solder joints after reflows were employed to investigate the mechanism of interfacial reaction between the Ni/Cu UBM and eutectic Sn-Pb solder. After deliberate quantitative analysis with an electron probe microanalyzer (EPMA), the effect of Cu content in solders near the interface of the solder/intermetallic compound (IMC) on the interfacial reaction could be probed. After one reflow, only one layered (Ni1−x,Cux)3Sn4 with homogeneous composition was found between the solder bump and UBM. However, after multiple reflows, another type of IMC, (Cu1−y,Niy)6Sn5, formed between the solder and (Ni1−x,Cux)3Sn4. It was observed that if the concentration of Cu in the solders near the solder/IMC interface was higher than 0.6 wt.%, the (Ni1−x,Cux)3Sn4 IMC would transform into the (Cu1−y,Niy)6Sn5 IMC. The Cu contents in (Ni1−x,Cux)3Sn4 were altered and not uniformly distributed anymore. With the aid of microstructure evolution, quantitative analysis, elemental distribution by x-ray color mapping, and related phase equilibrium of Sn-Ni-Cu, the reaction mechanism of interfacial phase transformation between the Sn-Pb solder and Ni/Cu UBM was proposed.  相似文献   

9.
A comparative study of the kinetics of interfacial reaction between the eutectic solders (Sn-3.5Ag, Sn-57Bi, and Sn-38Pb) and electroplated Ni/Pd on Cu substrate (Cu/Ni/NiPd/Ni/Pd) was performed. The interfacial microstructure was characterized by imaging and energy dispersive x-ray analysis in scanning electron microscope (SEM). For a Pd-layer thickness of less than 75 nm, the presence or the absence of Pd-bearing intermetallic was found to be dependent on the reaction temperature. In the case of Sn-3.5Ag solder, we did not observe any Pd-bearing intermetallic after reaction even at 230°C. In the case of Sn-57Bi solder the PdSn4 intermetallic was observed after reaction at 150°C and 180°C, while in the case of Sn-38Pb solder the PdSn4 intermetallic was observed after reaction only at 200°C. The PdSn4 grains were always dispersed in the bulk solder within about 10 μm from the solder/substrate interface. At higher reaction temperatures, there was no Pd-bearing intermetallic due to increased solubility in the liquid solder. The presence or absence of Pd-bearing intermetallic was correlated with the diffusion path in the calculated Pd-Sn-X (X=Ag, Bi, Pb) isothermal sections. In the presence of unconsumed Ni, only Ni3Sn4 intermetallic was observed at the solder-substrate interface by SEM. The presence of Ni3Sn4 intermetallic was consistent with the expected diffusion path based on the calculated Ni-Sn-X (X=Ag, Bi, Pb) isothermal sections. Selective etching of solders revealed that Ni3Sn4 had a faceted scallop morphology. Both the radial growth and the thickening kinetics of Ni3Sn4 intermetallic were studied. In the thickness regime of 0.14 μm to 1.2 μm, the growth kinetics always yielded a time exponent n >3 for liquid-state reaction. The temporal law for coarsening also yielded time exponent m >3. The apparent activation energies for thickening were: 16936J/mol for the Sn-3.5Ag solder, 17804 J/mol for the Sn-57Bi solder, and 25749 J/mol for the Sn-38Pb solder during liquid-state reaction. The corresponding activation energies for coarsening were very similar. However, an apparent activation energy of 37599 J/mol was obtained for the growth of Ni3Sn4 intermetallic layer during solid-state aging of the Sn-57Bi/substrate diffusion couples. The kinetic parameters associated with thickening and radial growth were discussed in terms of current theories.  相似文献   

10.
An asymmetrical interfacial microstructure was observed at both top and bottom interfaces of Cu/Sn-58Bi/Cu solder joints after isothermal aging at 120°C for different times. The asymmetrical interfacial microstructure resulted from asymmetrical Bi segregation, which was attributed to the density difference between Bi and Sn atoms. Bi atoms were driven to the bottom solder/Cu interface by gravity during the liquid soldering procedure since Bi atoms are more massive than Sn atoms. With increasing aging time, Bi accumulated at the bottom Cu3Sn/Cu interface and the Bi segregation enhanced Cu6Sn5 intermetallic compound growth, blocked Sn transport to the Cu3Sn intermetallic compound, and facilitated growth of the Cu6Sn5, based on the measured thicknesses of intermetallic compounds (including Cu6Sn5 and Cu3Sn) at both bottom and top interfaces for Cu/Sn-58Bi/Cu sandwich joints under the same aging process.  相似文献   

11.
Eutectic solder balls (63Sn-37Pb) joined to Cu pads with an Au/Ni metallization have been widely used in wafer-level chip-size package (WLCSP) technology for providing electrical and mechanical interconnections between components. However, some reliability issues must be addressed regarding the intermetallic compounds (IMCs). The formation of a brittle IMC layer between the solder/Cu pad interface impacts considerably upon the solder-ball shear strength. In addition, it will degrade the long-term operating reliability of the WLCSP. This study investigates, by means of experiments, the growth of the IMC layer under isothermal aging for the eutectic Sn-Pb solder reflowed on a Cu pad with an Au/Ni metallization. Forming the Cu pad with an Au/Ni metallization was achieved by a simple semiconductor-manufacturing process. The effects of the intermetallic layer on solder-ball shear strength were examined for various parameters, including the thickness of the Au layer, solder-ball size, and the diameter of the Cu pad. Experimental results indicate that two IMC layers, Au0.5Ni0.5Sn4 and Ni3Sn4, form at the solder/Cu pad interface after aging. The Au0.5Ni0.5Sn4 intermetallic layer dominates the total thickness of the IMC layer and grows with aging time while the solder-ball shear strength decreases after aging. The degradation of the solder-ball shear strength was found to be caused mainly by the formation of the Au0.5Ni0.5Sn4 layer. The experimental results established that a thinner Au layer on Cu pad can effectively control the degradation of solder-ball shear strength, and this is especially true for smaller ball sizes.  相似文献   

12.
The effect of aging at 150°C on the microstructure and shear strength of SnAg/Cu surface mount solder joint has been investigated with comparison to 62Sn36Pb2Ag/Cu. It is found that the diffusion coefficient of intermetallic compounds at SnAg/Cu interface is smaller than that of intermetallic compounds at SnPbAg/Cu interface at 150°. The shear strength of SnAg solder joint is higher and decreases at a smaller rate during aging compared to that of SnPbAg solder joint. The fracture surface analysis shows that as the aging time increases, the fracture takes place along the solder/Cu6Sn5 interface with an extension toward the Sn−Cu intermetallic layer.  相似文献   

13.
In this work, solder balls in ball grid array packaging technology with the pitch of 300 μm were fabricated by stencil printing solder paste and then reflowed at high temperature. In order to evaluate the quality of solder ball after printing and reflowing processes, the mechanical performance of the joint between the solder balls and the pad was measured by shear test and the electrical resistance was tested after assembly of the substrate and printed circuit board. A comparative study of pad size on the interfacial reaction between solder paste and surface finish of electroless nickel-electroless palladium-immersion gold on the organic substrate was performed and then analyzed by observing the microstructure at the interface. Large discontinuous (Cu,Ni)6Sn5 was found at the interface of the solder with the pad size of 120 μm, while spalled (Pd,Ni)Sn4 and thin (Cu,Ni)6Sn5 layer appeared for a pad size of 140 μm. The IMC (intermetallic compounds) was determined by the residual Cu concentration, the Pd concentration in the solder, and the Ni2SnP barrier layer morphology at the interface, which were significantly influenced by the pad size. A reaction model during the reflow was proposed to illustrate the growth of the IMC and the relationship between the IMC and the pad size. With Pd concentration higher than the solubility of Pd in the solder, spalled (Pd,Ni)Sn4 took shape along the interface. The solubility of Pd was influenced by Ni concentration; however, the Ni diffusion from the substrate was largely dependent on the barrier layer Ni2SnP. Furthermore, the Ni diffusion also impacted the growth and morphology of (Cu,Ni)6Sn5, which was not only limited by the Cu concentration.  相似文献   

14.
Interfacial structure plays a great role in solder joint reliability. In solder joints on Cu, not only is Kirkendall voiding at the solder/Cu interface a concern, but also the growth of interfacial Cu–Sn intermetallic compounds (IMCs). In this work, evolution of microstructure in the interfacial region was studied after thermal aging at 100–150 °C for up to 1000 h. Special effort was made during sample preparation to reveal details of the interfacial structure. Thickness of the interfacial phases was digitally measured and the activation energy was deduced for the growth of Cu3Sn. Kirkendall voids formed at the Cu/Cu3Sn interface as well as within the Cu3Sn layer. The thickness of Cu3Sn significantly increased with aging time, but that of Cu6Sn5 changed a little. The interfacial Cu3Sn layer was found growing at the expense of Cu6Sn5. Evolution of the interfacial structure during thermal aging is discussed.  相似文献   

15.
The interaction between Cu/solder interface and solder/Ni interface at a Cu/SnAgCu/NiAu sandwich solder joint with various surface finishes and solder heights was investigated. The interfacial microstructure and composition of intermetallic compounds (IMCs) were characterized by a scanning electron microscope (SEM) equipped with energy-dispersive x-ray spectroscopy (EDX). The phase structure of IMC was identified by x-ray diffraction (XRD). It is found that ternary (Cu,Ni)6Sn5 IMCs form at both interfaces. The composition, thickness, and morphology of the ternary IMCs depend not only on the interface itself, but also on the opposite interface. That is to say, strong coupling effects exist between the two interfaces. Lattice parameters of (Cu,Ni)6Sn5 shrink with increasing Ni content, in agreement with Vegard’s law. The mechanism of ternary IMC formation and interface coupling effects are discussed in this paper.  相似文献   

16.
The creep-rupture lives of Sn3.8Ag0.7Cu and Sn3.8Ag0.7Cu0.03Ce lead-free solder joints for electronic packaging were investigated, respectively. And the relationship between creep behavior and intermetallic compound (IMC: Ag3Sn, Cu6Sn5, CeSn3) particles in SnAgCu/SnAgCuCe solder joints has been obtained. Meanwhile, rare earth Ce concentration gradient and retardation effect of Ce on the IMC layer have been observed at the solder/Cu interface. Moreover, aging reaction of Sn and Cu, and the effect mechanism of rare earth Ce on two IMCs (Cu6Sn5 and Cu3Sn) are reported.  相似文献   

17.
The joint strength and fracture surfaces of Sn-Pb and Au stud bumps for photodiode packages after isothermal aging were studied experimentally. Aluminum/gold stud bumps and Cu/Sn-Pb solders were adopted and aged for up to 900 h to analyze the effect of intermetallic compound (IMC) formation. The joint strength decreased with aging time. The diffraction patterns of Cu6Sn5, scallop-shaped IMCs, and planar-shaped Cu3Sn were characterized by transmission electron microscopy (TEM). The IMCs between Au stud bumps and Al pads was identified as AlAu2. The formation of Kirkendall voids and the growth of IMCs at the solder joint were found to be a possible mechanism for joint strength reduction.  相似文献   

18.
《Microelectronics Reliability》2014,54(9-10):1856-1861
High power modules are still facing the challenges to increase their power output, increase the junction temperature, and increase their reliability in harsh conditions. Therefore this study is doing a detail analysis of the soldering joint between a direct copper bonded substrate and a high power IGBT made with the high lead solder alloy Pb92.5Sn5.0Ag2.5. The intermetallic phases and the microstructure of standard chip to substrate solder joint will be analysed and compared to deteriorated joints coming from modules which have undergone an active thermal cycling. As expected, the as soldered joint was clearly different than solder joints made for ball grid array or small components on PCBs. The as soldered joint shows no sign of Cu6Sn5 intermetallic layer, but instead shows the presence of Ag3Sn particles at the solder–chip interface. Furthermore, the failure mechanisms under active thermal cycling also seem to be different. There is no growth of intermetallic phases and no strong delamination of the device. Instead a large network of intermetallic particles (Ag3Sn) is produced during aging and seems to degrade the solder thermal properties.  相似文献   

19.
Flip-chip interconnection technology plays a key role in today’s electronics packaging. Understanding the interfacial reactions between the solder and under-bump metallization (UBM) is, thus, essential. In this study, different thicknesses of electroplated Ni were used to evaluate the phase transformation between Ni/Cu under-bump metallurgy and eutectic Sn-Pb solder in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure for the flip-chip technology. Interfacial reaction products varied with reflow times. After the first reflow, layered (Ni1−x,Cux)3Sn4 was found between solder and Ni. However, there were two interfacial reaction products formed between solders and the UBM after three or more times reflow. The layered (Ni1−x,Cux)3Sn4 was next to the Ni/Cu UBM. The islandlike (Cu1−y,Niy)6Sn5 intermetallic compound (IMC) could be related to the Ni thickness and reflow times. In addition, the influence of Cu contents on phase transformation during reflow was also studied.  相似文献   

20.
Electroless Ni-P under bump metallization (UBM) has been widely used in electronic interconnections due to the good diffusion barrier between Cu and solder. In this study, the mechanical alloying (MA) process was applied to produce the SnAgCu lead-free solder pastes. Solder joints after annealing at 240°C for 15 min were employed to investigate the evolution of interfacial reaction between electroless Ni-P/Cu UBM and SnAgCu solder with various Cu concentrations ranging from 0.2 to 1.0 wt.%. After detailed quantitative analysis with an electron probe microanalyzer, the effect of Cu content on the formation of intermetallic compounds (IMCs) at SnAgCu solder/electroless Ni-P interface was evaluated. When the Cu concentration in the solder was 0.2 wt.%, only one (Ni, Cu)3Sn4 layer was observed at the solder/electroless Ni-P interface. As the Cu content increased to 0.5 wt.%, (Cu, Ni)6Sn5 formed along with (Ni, Cu)3Sn4. However, only one (Cu, Ni)6Sn5 layer was revealed, if the Cu content was up to 1 wt.%. With the aid of microstructure evolution, quantitative analysis, and elemental distribution by x-ray color mapping, the presence of the Ni-Sn-P phase and P-rich layer was evidenced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号