首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behavioural consequences of neonatal lesions of the frontal cortex are limited as compared with similar lesions performed in adulthood. The present study has investigated, using unbiased quantitative methods with randomized systematic sampling, the total neuronal cell numbers in the mediodorsal nucleus of the thalamus after aspiration lesions of the medial prefrontal cortex performed in neonatal and in adult rats. It was found that the reduction in total cell numbers after neonatal prefrontal cortex lesions was similar to that found after adult cortex lesions. In neonatally lesioned animals the neuronal cell density was significantly increased by 13%, whereas in adult lesioned animals it was unchanged. On the other hand, the volume of the mediodorsal nucleus was reduced by 27% in neonatally, and 20% in adult lesioned animals. Total neuronal cell number of the mediodorsal nucleus was significantly decreased in neonatally as well as in adult lesioned rats, by 14% and 21%, respectively. These findings are discussed in the light of the previously proposed role of the thalamus as a neural substrate of functional sparing after neonatal cortical lesions.  相似文献   

2.
Eight rats with removal of the motor cortex in adulthood were compared behaviorally and neuroanatomically with 10 rats with similar removals at 4 days of age. Results suggest that neonatal ablation of the motor cortex of rats is more debilitating behaviorally than similar injury in adulthood and produces abnormal morphogenesis of the posterior neocortex. Neonatal lesions of the motor cortex produced more chronic abnormalities in movements of the distal effectors that accompany adult lesions (tongue, snout, and digit use) and, in addition, produced abnormalities in limb placement on a narrow beam and a significant impairment in spatial learning, neither of which is associated with adult lesions. When the brains of neonatally operated Ss were compared with those of 10 controls or 5 Ss operated on in adulthood, there were striking differences. Although the area of cavity appeared smaller in the neonatal operates, their brains weighed less, the neocortex was thinner, and the cross-sectional area of the remaining cortex was reduced, when compared with those of the adult-operated group. It is suggested that studies of the acquisition of various neuropsychological learning tasks may have greatly overestimated the degree of sparing following anterior neocortical lesions in rats. (36 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

3.
Neonatal handling induces long-lasting effects on behaviors and stress responses. The objective of the present study was to analyze the effects of neonatal handling (from the 1st to the 10th day after delivery) on the number of cells and volume of locus coeruleus (LC) nucleus in male and female rats at 4 different ages: 11, 26, 35, and 90 days. Results showed significant reductions in the number of cells and the volume of the LC nucleus in neonatally handled males and females compared with nonhandled rats. Environmental stimulation early in life induced a stable structural change in a central noradrenergic nucleus, which could be one of the causal factors for the behavioral and hormonal alterations observed in adulthood. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

4.
Previous studies in the mouse have shown that neonatal lesions to the cholinergic basal forebrain (nBM) areas result in transient cholinergic depletion of neocortex and precipitate altered cortical morphogenesis. Lesion-induced morphological alterations in cortex persist into adulthood and are accompanied by behavioral changes, including spatial memory deficits. The current study investigated whether neonatal nBM lesions affect male and female mice differently in adulthood. Quantitative morphometry of cortical layer width was employed to assess alterations in cytoarchitecture in neonatally nBM-lesioned and littermate control mice of both sexes following behavioral testing. Our results showed significant decreases in cortical layer IV and V widths across somato/motor cortex in neonatally nBM lesioned mice of both sexes. Sexually dimorphic responses were observed in cortical layer II/III and total cortical width, limited to the area containing the "barrel cortex" representation of the whisker hairs. In lesioned females, layer II/III and total cortical width were decreased relative to female controls, and in lesioned males, layer II/III was increased relative to controls, whereas total cortical width was unchanged. In male but not female mice we observed significant correlations between decreased widths in layer IV and V and impaired performance on a spatial memory task. The current data further support a role of developing cholinergic cortical afferents in the modulation of cortical morphogenesis and cortical circuits involved in cognitive behaviors. In addition, our observations provide further evidence for sexually dimorphic development and function in cognitive centers of the rodent brain.  相似文献   

5.
Effects of neonatal androgenization or neonatal ovariectomy in female rats on endocrine functions and mammary tumourigenesis are examined. Pituitary gonadotrophin contents (both LH and FSH) are significantly lower in neonatally androgenized rats (TT) and significantly increased in neonatally ovariectomized rats (NO) when compared with controls of the same age. Plasma and pituitary prolactin levels are higher in TT rats than in the control rats of the same age, but the difference is not significant. Mammary tumours developing in TT rats after DMBA treatment are predominantly fibroadenomata, and lactogenesis in TT rats occurs almost entirely in those receiving DMBA treatment. Neonatal ovariectomy in female rats protects against subsequent induction of mammary cnacer by DMBA. The relationship between neonatal modification of endocrine functions and mammary tumourigenesis is discussed.  相似文献   

6.
Previous studies have shown that extensive damage to the medial prefrontal cortex (mPFC) of rats causes reversal learning deficits. The mPFC of rats, however, consists of several subareas that are different from each other in both cytoarchitecture and neural connectivity, suggesting a functional dissociation among the mPFC subareas. In the present study, selective lesions of the mPFC of rats were made with a specially designed microknife whose intracranial placement could be controlled stereotaxically. Restricted lesions were made to each of the 3 parts of the mPFC: the anterior cingulate area (AC) (including the medial precentral area, PrCm), the prelimbic area (PL), and the infralimbic area (IL). One week after surgery, rats were trained in an aversively motivated visual discrimination task in a novel rotating T-maze. After reaching the acquisition criterion, rats were trained in a reversal task in the same maze. No difference was found in acquisition between control and mPFC lesioned rats. However, lesions of either the PL or the IL produced a marked deficit in the reversal task. This behavioral deficit was not found in rats with lesions of the AC. The results indicate that the mPFC of rats is not essential for discrimination learning, but that each of the 2 ventral subareas of the mPFC, PL, and IL, plays a critical role in reversal learning.  相似文献   

7.
Subcortical damage in neonates often has more severe consequences than in adults. Unilateral electrolytic hippocampal lesions in adult rats typically result in transient memory deficits, whereas neonatal lesions cause lasting memory impairments. We hypothesized that unilateral lesions made at birth may affect synaptic physiology in the contralateral hippocampus. Consequently, the ability to sustain long-term potentiation (LTP), a form of synaptic plasticity believed to underlie certain forms of memory, was compared between slices from the remaining hippocampus of rats lesioned as newborns and as adults. Initial studies showed that a train of 10 stimulation bursts patterned after the hippocampal theta rhythm produced robust and stable LTP both in slices from controls and rats lesioned at birth. However, a theta burst pattern of stimulation closer to intrinsic physiology (five burst pairs separated by 30 s each), induced significantly less LTP in slices from rats lesioned at birth compared to those from controls and rats lesioned as adults. To investigate possible mechanisms underlying the deficit, the degree of paired-pulse facilitation (PPF) as well as the amount of depolarization occurring between two successive theta bursts were analyzed. The lesion did not detectably change PPF characteristics, suggesting that presynaptic mechanisms are normal. However, the extent to which a burst response was increased by a prior burst was significantly diminished in slices from rats lesioned at birth compared to those from controls and rats lesioned as adults, indicating that postsynaptic factors involved in the initial triggering events of LTP are affected by the lesion. Reduced ability to sustain LTP in the remaining hippocampus may contribute to impaired memory function after unilateral neonatal hippocampal lesion.  相似文献   

8.
Albino rats, 0, 9, 12, 15, 18, 21 or greater than 90 days of age, were given a mid-thoracic spinal cord transection. Evaluation of responses of the hindlimbs to a variety of behavioral tasks was begun on the day of surgery and at intervals throughout the postoperative survival period (up to 300 days). Two investigators, independently and without knowledge of the animals' ages or survival times, rated the response data. Histological study showed all transections to be complete. Large differences in behavior are observed when animals trasected at the neonatal stage (0-4 days of age) are compared with animals transected at the weanling stage (21-26 days of age)37. Results of the present investigation indicate a critical period near 15 days of age; animals lesioned prior to this age (0, 9, 12 days of age) show response development and recovery similar to the neonatally lesioned animal, whereas those animals lesioned at a later age (18, 21, greater than 90 days of age) show little recovery and are behaviorally similar to the weanling transected animal. In animals lesioned prior to the fifteenth postnatal day, postural responses appear depressed for a brief period but recover rapidly while most responses of animals in the older groups are depressed for longer periods and never attain the degree of recovery characteristic of the neonatally transected animal. Finally, like the neonatally transected animal, rats lesioned on the ninth and twelfth postnatal day develop certain responses at appropriate times relative to normal response development. If, however, these responses are mature and supraspinal control is present at the time of lesioning, they appear to be permanently depressed and fail to recover.  相似文献   

9.
Self tolerance is acquired by the developing immune system. As reported here, particular properties of the neonatal tissue contribute to this process. Neonatal skin, but not adult skin, was accessible for na?ve CD8 T cells. In mouse bone marrow chimeras generated at different ages, recent thymic emigrants were tolerized to a skin-expressed major histocompatibility complex class I antigen only during a neonatal period but not during adulthood. Blockade of T cell migration neonatally prevented tolerance induction. Thus, T cell trafficking through nonlymphoid tissues in the neonate is crucial for the establishment of self tolerance to sessile, skin-expressed antigens.  相似文献   

10.
Lesioning the ventral hippocampus of neonatal rats has been proposed as an experimental model of schizophrenia. This lesion causes a syndrome of hyperresponsivity to the stimulant effects of amphetamine, impaired grooming and disrupted social interactions, effects that emerge during adolescence, much like schizophrenia. Persisting cognitive effects of neonatal ventral hippocampal lesions were assessed in the current study, because the hippocampus is critically important for a variety of cognitive functions and cognitive impairment and because it is an important feature of schizophrenia. Spatial learning and working memory were assessed in the radial-arm maze, which is sensitive to the adverse effects of hippocampal lesions made in adults. Lesioned rats showed pronounced deficits in radial-arm maze choice accuracy that persisted throughout training. Deficits were seen during the prepubertal period as well as in adulthood. Even though the lesioned rats performed more poorly, they were significantly less sensitive to the amnestic effects of the nicotinic antagonist mecamylamine and the muscarinic antagonist scopolamine. No significant effects of nicotine or amphetamine were seen in either the lesioned or control groups. The long-lasting deficits in spatial learning and working memory resulting from neonatal ventral hippocampal lesions show that, unlike frontal cortical lesions during the same age, the effects of hippocampal lesions are not overcome during development. The resistance to the amnestic effects of nicotinic and muscarinic acetylcholine (ACh) antagonists suggests that the hippocampus is a critical site for the action of these drugs. Neonatal hippocampal lesions may provide a good model of the cognitive impairments of schizophrenia and may be useful to assess novel drug effects to counteract the cognitive deficits in schizophrenia.  相似文献   

11.
The purpose of this study was to show that the occurrence of skin ulcers observed in animals neonatally treated with the neurotoxin capsaicin coincide with trophic disturbances. In addition, cutaneous lesions increased when self-grooming and scratching behaviors reached maturity. The temporal course of cephalic cutaneous wounds in neonatally capsaicin-treated rats was evaluated in animals wearing and not wearing plastic collars from postnatal day (P) 21 until P45. The collars were used to prevent self-grooming and scratching. Beginning on P21, capsaicin-treated rats under both conditions showed transient skin ulcers distributed throughout the head and neck regions. In the capsaicin-treated group without collars, lesions reached their greatest severity by P40, when self-grooming and scratching behaviors obtained adult characteristics. Furthermore, no lesions were detected after 25 days. In the capsaicin-treated rats that wore plastic collars, the widest distribution of skin lesions occurred on P55, after which time lesions vanished detection by 25 days. In this latter group, the cutaneous lesions were exacerbated when collars were removed. Data suggest that transient cutaneous wounds associated with neonatal capsaicin administration may be mediated via capsaicin-sensitive sensory neurons that are involved in trophic and regenerating neural mechanisms.  相似文献   

12.
Exposure to gonadal hormones during perinatal life influences later behavior. The finding that sex differences exist in progestin receptor expression in the perinatal rat brain suggests differential sensitivity of male and female brains to progesterone (C. K. Wagner, A. N. Nakayama, & G. J. De Vries, 1998). Because these sex differences are in neural sites that influence sexually differentiated sexual, parental, and fearful behaviors in adults, this study examined the effects of administering the progestin receptor antagonist RU486 for the first 10 days after birth on these behaviors in adulthood. Neonatal RU486 significantly reduced sexual behavior in males but did not impair reproduction in females. Neonatal RU486 did not affect parental responses of virgin rats exposed to pups (sensitization) but reduced fear in the elevated plus-maze in both sexes. Treatment of pups with RU486 affected neither mother–litter interactions nor plasma testosterone levels in males during or after treatment. These results suggest that neonatal exposure to progesterone, in addition to androgens and estrogens, influences behavioral development in rats. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

13.
112 3-day-old male Sprague-Dawley rats were injected neonatally with .01, .1, 1, 10, 100, or 1,000 μg of estradiol benzoate (EB), 10,000 μg of testosterone propionate (TP), or sesame oil; they were subsequently examined for testicular, penile, and accessory organ development. Sexual behavior was evaluated during therapy with fluoxymesterone (FM) and then with TP. EB in dosages greater than 1.0 μg delayed testicular descent, reduced the size and hormone responsiveness of reproductive organs, and decreased sexual behavior in a dose-dependent manner. The 10,000 μg dosage of neonatal TP delayed testicular descent and reduced sexual behavior to levels near those of the 10–200 μg EB groups, but it produced no significant penile or accessory organ changes. Neither reduced peripheral organ development nor inhibited neonatal testicular secretions fully explain reductions in male behavior following large dosages of neonatal TP. Neonatal androgen may reduce the responsiveness of CNS neurons governing male sexual behavior after being converted to estrogen or by directly altering steroid receptor systems. (32 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
The role of the developing cholinergic basal forebrain system on cognitive behaviors was examined in 7 day-old rats by giving lesions with intraventricular injections of 192 IgG-saporin or saline. Rats were subjected to passive avoidance on postnatal days (PND) 22–23, water maze testing on PND 50–60, and a open-field test (in which reactions to spatial and object novelty were measured) on PND 54. Behavioral effects of the lesions were evident only in the open-field test with 5 objects. Unlike controls, the lesioned rats did not detect a spatial change after a displacement of 2 of the 5 objects. Control and lesioned rats, however, showed comparable novelty responses to an unfamiliar object. Lesion effectiveness was confirmed by 75% and 84% decreases in choline acetyltransferase activity in cortex and hippocampus. These results suggest that the developing cholinergic system may be involved in spatial information processing or attention to spatial modifications. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
Sex hormones have activational effects on the hypothalamic-pituitary-adrenal (HPA) axis in adulthood: For example, corticosterone release is influenced by gonadal status. These experiments investigated whether sex hormones have organizational effects on the HPA axis of male rats: Do sex hormones have relatively permanent effects on its development? In adults, both neonatal (neoGDX) and adult gonadectomy (adult GDX) resulted in elevated corticosterone (CORT) levels in response to stress compared to intact rats. Five days of testosterone propionate (TP) replacement was not as effective at attenuating CORT levels in neoGDX rats as in adult GDX rats. Neonatal GDX elevated corticosterone binding globulin (CBG) levels, whereas adult GDX was without effect. In Experiment 2 the effects of neonatal gonadectomy and neonatal treatment with either TP, estradiol benzoate (EB), or oil vehicle was examined. Despite 14 days of hormone replacement, neoGDX showed elevated CORT levels in response to stress compared to all other groups. A single neonatal dose of TP or EB in neoGDX rats eliminated the increased responsiveness. Neonatal TP and EB were without effect in sham-operated rats. Plasma CBG levels were elevated in neoGDX groups regardless of neonatal hormone treatment. Corticosteroid receptor binding levels were examined in various brain areas and the pituitary in two groups most different in their androgen experience: NeoGDX and shams that did not receive treatments as adults. NeoGDX had lower levels of glucocorticoid receptor, and higher levels of mineralocorticoid receptor binding in the pituitary. No other receptor differences were found. These experiments suggest that neonatal sex hormones influence the sensitivity of the HPA axis to sex hormones in adulthood and, thus, that they have organizational effects in addition to activational effects on HPA function.  相似文献   

16.
Tested Sprague-Dawley male and female albino rats for intraspecies aggression without the use of shock. In the 1st experiment, 6 male pairs showed more biting attacks, offensive sideways movements, and self-grooming than did 6 female pairs; male pairs also showed more stereotyped defensive/submissive behaviors and were wounded more frequently. The 2nd experiment with 103 Ss examined the effects of neonatal castration and testosterone propionate (TP) on fighting. Males castrated at birth attacked other males less frequently than did controls when tested with TP treatment as adults. The TP given at birth to neonatally castrated males restored attacks to control levels. Females given TP as neonates did not differ from either male or female controls. Other aggressive/defensive behaviors, however, did not show this pattern. Results suggest that while the presence of testosterone during a brief postnatal period and during adulthood is necessary for attack behavior to occur, other related behaviors may not be affected in a similar manner. (11/2 p ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
This research examined cognitive and motivational processes at different developmental stages in rats with neonatal ventral hippocampus (VH) lesions, an approach used to model schizophrenia. In Experiment 1, performance in a T-maze alternation task was assessed on postnatal days (PNDs) 22 and 23. VH-lesioned rats displayed a severe deficit relative to controls. In Experiment 2, behaviorally naive rats were tested for spontaneous alternation at PND 29. Alternation was intact in VH-lesioned rats only when successive alternations were separated by >5 s. In Experiment 3, motivation was tested in a cost-benefit T-maze task and in a saccharine-water preference test. Between PNDs 22-37, behaviorally naive rats with neonatal VH lesions displayed weaker saccharine preference than controls, but the 2 groups did not differ on the cost-benefit task. At adulthood, between PNDs 56-72, the difference on saccharine preference persisted and an impairment on the cost-benefit task emerged. Overall, these results suggest that working memory deficits observed at the weaning stage were not secondary to spontaneous alternation or motivation dysfunctions. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
Exposure to infectious agents during early postnatal life often alters glucocorticoid responses to stress and immune outcomes in adulthood. The authors examined whether neonatal infection results in memory impairments in adult animals. Rats infected with Escherichia coli (E. coli) as neonates displayed impaired memory for a recently explored context in adulthood. This impairment, however, was only observed in rats that received a peripheral immune challenge (lipopolysaccharide; LPS) immediately following context exposure. Adult rats treated neonatally with E. coli also had decreased hippocampal astrocytes compared with phosphate-buffered saline-treated rats, but displayed increased astrocyte reactivity in the hippocampus and decreased brain interleukin-1β following lipopolysaccharide. Infection during development appears to alter glia within the hippocampus, which may contribute to altered cytokine responses and memory impairment. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
After a unilateral resection of the frontal cortex in fetal cats the volume of the caudate nucleus increases while the packing density of neuronal and glial cells does not change. In the present report we address the questions of whether a similar lesion sustained neonatally or a more extensive neodecortication sustained neonatally or in adulthood may have the same unusual effect. Stereological methods were used to determine bilaterally the volume of the caudate nucleus as well as to estimate the total number and packing density of neurons and glial cells in the caudate nucleus ipsilateral to the lesion. Comparisons between each of three experimental groups and intact animals were made at a time when all animals were young adults. In cats with a unilateral frontal cortical lesion performed between postnatal days 8 and 14, none of the measured parameters changed significantly compared to intact controls. In cats with removal of the entire left neocortex in adulthood, the ipsilateral caudate nucleus volume decreased by 18.1% and by 21.5% relative to intact and to neonatal hemidecorticated cats respectively (P < 0.05), with no change in the contralateral caudate. In the ipsilateral caudate the total number of neurons decreased by 21.8% (P < 0.05) compared to controls while the number of glial cells did not change significantly. In the same caudate the packing density of neurons did not change significantly (except for a 17.1% decrease, P < 0.05, relative to frontal-lesioned cats) while that of glial cells increased by 19.9% and by 24.7% compared to intact and neonatal neodecorticated cats respectively (P < 0.05). In adult cats in which a similar hemineodecortication was performed between postnatal days 8 and 13, the only significant changes were a 25.8% (P < 0.05) and a 30.6% (P < 0.05) decrease in neuron packing density compared to intact and frontal-lesioned cats, respectively. In summary, a restricted unilateral neocortical resection in neonatal cats did not induce any morphological changes in the caudate nucleus that we could detect with the methods employed. In contrast, an extensive neodecortication sustained in adulthood produced ipsilateral caudate shrinkage with substantial neuron loss and increase in packing density of glial cells, while a similar lesion but sustained neonatally only altered substantially the packing density of glial cells (decreased). Therefore, we concluded that (i) the caudate nucleus hypertrophy which we reported after a unilateral discrete cortical removal during the prenatal period is a unique phenomenon which is peculiar to the cat brain during the last third of gestation; (ii) the caudate nucleus changes seen in the cats with hemineodecortication in adulthood are degenerative in nature and closely resemble those which we reported for other subcortical nuclei following a similar lesion; and (iii) the animals with neonatal hemidecortication are relatively spared from these degenerative effects. Overall, these results indicate that, as for other structures, the morphological changes of the caudate nucleus following neocortical damage depend on the maturational state of the brain at the time of the injury and on the size of the lesion, and support the notion that the consequences of cerebral cortex lesions upon subcortical brain nuclei are of a different nature when sustained in prenatal as compared to postnatal cats.  相似文献   

20.
This study examines whether treatment with GM1 ganglioside or the corticotropin (ACTH)(4-9) analogue ORG2766 can facilitate the behavioural recovery of adult rats with medial prefrontal cortex (mPFC) lesions, as animals are impaired in their food hoarding and spatial delayed alternation performance following mPFC lesions. No ameliorating effects of GM1 treatment on performance of these behaviours were observed. Although treatment with ORG2766 somewhat improved the hoarding performance of lesioned animals, the intermediate amount of pellets hoarded was not significantly different from that of either sham-operated or vehicle-treated lesioned rats. No effect of ORG2766 treatment was observed in the spatial delayed alternation test. Further, no changes were detected in the mesocortical dopamine innervation, presumed to be involved in the neural mechanism of behavioural sparing, in response to either treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号