共查询到19条相似文献,搜索用时 93 毫秒
1.
为提高差分演化算法的性能,提出一种精英反向学习策略的差分演化算法.该算法以一定的概率通过反向学习生成种群中精英个体的反向解,引入一般化系数k,构造动态搜索边界下的反向群体形成反向搜索空间,之后同时评估当前种群与反向种群的解来指导算法的搜索空间向包含全局最优解的空间逼近,有利于均衡算法的勘探与开采能力.对13个典型的测试函数进行实验,将本文算法与5种代表性的差分演化算法进行对比,结果表明本文算法不仅在求解精度上更优,在收敛速度上也有非常大的优势. 相似文献
2.
演化算法是求解多目标优化问题(MOP)重要而有效的方法,而应用演化策略、技巧是改善解性能的重要途径。论文叙述了多目标优化问题的有关概念,结合已有算法中的方法,设计了基于两种交叉操作相互结合的多目标演化算法(MOEAHC),该算法不仅具有较高的计算效率,而且能够保持解的多样性分布。测试结果表明该算法的良好性能。 相似文献
3.
针对基本果蝇优化算法在求解高维函数时存在求解精度低、迭代收敛速度较慢等问题,提出一种基于差分演化的果蝇优化算法。该算法将差分演化策略融合到果蝇优化算法中,对每代产生的群体进行变异、交叉、选择操作,增加种群的多样性,使其能更快、更有效地求解高维函数问题。对12个基准函数进行了仿真验证,结果表明,与基本的果蝇优化算法和差分演化算法相比,新算法在收敛速度、求解精度上都具有明显的优越性。 相似文献
4.
5.
属性约简是粗糙集(RS)理论的核心内容之一。应用差分演化(DE)算法求解最小属性约简是一个新的方向。对差分演化算法进行了改进,给出了一种新的适应值函数的定义形式;并在此基础上提出了基于差分演化算法的属性约简算法。最后利用多组数据对该算法进行了仿真实验,并与现有算法进行了比较分析。实验结果表明该算法是有效的,能快速地进行属性约简。 相似文献
6.
本文针对演化算法中的自适应动态种群问题,探讨了年龄动力学模型,给出了简化的模型框架,提出了基于该模型的自适应种群演化算法,实现了对进化种群规模的动态控制 。实验表明,该算法比固定种群规模的经典算法具有更好的性能。 相似文献
7.
《计算机应用与软件》2016,(5)
针对集装箱堆场多场桥调度问题,构建调度模型,提出一种混合演化策略算法。采用基于实数的四维个体编码方法,设计了基于三点交叉互换的重组算子以及基于两点互换的变异算子,并采用三种不同的局部搜索策略来优化算法的性能。通过算例分析证明混合演化策略算法在优化多场桥调度问题时的有效性。在三种不同的局部搜索策略中,基于互换操作的局部搜索策略要优于其他两种,能明显改善演化策略算法的优化性能。最后,通过一组对比试验对局部搜索的次数进行了分析。 相似文献
8.
差分演化(Differential Evolution,DE)算法的性能依赖于变异策略的选择和控制参数的设置.不同问题对DE的变异策略和参数的设置各不相同.为了提高DE的性能,提出一种多变异策略的自适应差分演化算法,建立由多种变异策略组成的策略池,两个主要参数自适应策略控制.为了验证所提算法的性能,在测试数据集CEC2013上进行了实验,并将其与使用6种不同变异策略的原始DE和4种改进DE进行比较.实验结果表明,提出的算法是一种有效的DE变种,其性能优于其它DE. 相似文献
9.
10.
提出一种新的多目标演化算法——基于斜率淘汰策略的多目标演化算法。利用基于斜率的淘汰策略,在演化过程中能以较低的时间复杂度更新精英空间、保存精英个体(Elitist),且取得的解数量大,既保证了近似解集对Pareto前沿的逼近,又很好地保持了解集分布的均匀性。对于一些代表性的Benck Mark问题,数值试验都取得了非常好的效果。 相似文献
11.
双精英协同进化遗传算法 总被引:10,自引:0,他引:10
针对传统遗传算法早熟收敛和收敛速度慢的问题,提出一种双精英协同进化遗传算法(double elite coevolutionary genetic algorithm,简称DECGA).该算法借鉴了精英策略和协同进化的思想,选择两个相异的、高适应度的个体(精英个体)作为进化操作的核心,两个精英个体分别按照不同的评价函数来选择个体,组成各自的进化子种群.两个子种群分别采用不同的进化策略,以平衡算法的勘探和搜索能力.理论分析证明,该算法具有全局收敛性.通过对测试函数的实验,其结果表明,该算法能搜索到几乎所有测试函数的最优解,同时能够有效地保持种群的多样性.与已有算法相比,该算法在收敛速度和搜索全局最优解上都有了较大的改进和提高. 相似文献
12.
13.
针对动态VRP对计算实时性要求,在计算实际路网中的多源点最短距离问题时,将规模很大的原完整路网划分为不同层次,并分区划分为若干小规模子图,将原大规模路网中的最短路问题近似转化为若干小规模问题,通过反复使用Dijkstra算法求出各点间的距离矩阵,并用精确方法对少数误差较大的情况进行修正。以北京市地图为例,实现了二级分层路网中的最短距离矩阵算法,并应用于配送调度中的车辆路径问题求解。实例结果表明,该方法在带来约8%的VRP结果误差情况下,能够大幅度地缩短计算时间,适用于实时性要求很高的动态调度。 相似文献
14.
15.
Niu Xinwen Ding Han Xiong Youlun School of Mechanical Science Engineering Huazhong University of Science Technology Wuhan China Manufacturing Production 《计算机辅助绘图.设计与制造(英文版)》2001,(2)
Using group and subassembly cluster methods, the hierarchical structure of a product is ?generated automatically, which largely reduces the complexity of planning. Based on genetic algorithm, the optimal of assembly sequence of each structure level can be obtained by sequence-by-sequence search. As a result, a better assembly sequence of the product can be generated by combining the assembly sequences of all hierarchical structures, which provides more parallelism and flexibility for assembly operations. An industrial example is solved by this new approach. 相似文献
16.
一种快速的基于占优树的多目标进化算法 总被引:7,自引:0,他引:7
为了解决多目标进化算法中适应值指派(fitness assignment)的耗时问题,提出了一种新颖的适应值指派方法--占优树.占优树保存了个体之间的必要信息,暗含了个体的密度信息,而且显著减少了个体之间的比较.此外,基于占优树的淘汰策略没有花费额外的代价就保存了种群多样性.在此基础上,提出了一种新的基于占优树的多目标进化算法.通过6个测试问题和3个方面的测试标准,新算法在接近真实的最优前沿和保持种群的多样性方面,与SPEA2和NSGA-II性能相当,但速度要比它们快得多. 相似文献
17.
18.
基于分层遗传算法的网格任务调度策略 总被引:2,自引:0,他引:2
针对传统的网格任务调度算法存在的缺陷,提出了用分层遗传算法来实现对网格任务调度策略的优化.在构造分层遗传算法时引入了SGA,AGA和CHC算法. SGA采用基本的遗传操作,保证了种群的多样性;AGA对交叉概率和变异概率的动态调整,保证了遗传算法的收敛性;CHC算法强调优良个体的保留,加快了遗传算法的收敛速度;分层遗传算法在吸收了这3种算法优点的基础上进行优化.实验结果表明,分层遗传算法在结果精度和收敛速度上都较其他算法有较大程度的提高. 相似文献
19.
进化策略是遗传/进化算法中的重要算法之一.如何选择合适的策略来引导进化则又是进化策略的关键问题之一,本文从进化策略对自然选择的基本理解和结论出发,给出了一种对进化策略中的策略选择问题的进化优化方法.同时,我们还讨论了基于进化策略的机器学习问题. 相似文献