共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
针对现阶段语义分割算法在野外战场环境中对迷彩伪装目标分割边界不理想、小目标分割精度低的问题,提出一种结合多尺度特征提取和多层次注意力机制的迷彩伪装目标语义分割算法CSS-Net.该算法由编码结构和解码结构组成.编码部分利用轻量化的深度可分离卷积联合残差结构构建特征编码器,对迷彩伪装目标图像进行特征提取;解码部分设计了策略选择的多尺度特征融合模块和多层次注意力特征增强模块,用以获取图像的多尺度信息和通道信息,在逐步精细化分割结果的同时进一步增强图像的语义解码过程.实验结果表明,CSS-Net算法能够有效实现复杂战场环境下伪装目标的分割识别,总体分割的平均交并比指标达到91.98%,分割边界得到改善.与DeepLabv3+算法相比,CSS-Net算法用于迷彩伪装小目标图像分割时的平均交并比指标增长3.71个百分点,对于多尺度目标分割的平均交并比指标均超过85%,分割效果提升明显. 相似文献
3.
目的 伪装目标是目标检测领域一类重要研究对象,由于目标与背景融合度较高、视觉边缘性较差、特征信息不足,常规目标检测算法容易出现漏警、虚警,且检测精度不高。针对伪装目标检测的难点,基于YOLOv5(you only look once)算法提出了一种基于多检测层与自适应权重的伪装目标检测算法(algorithm for detecting camouflage targets based on multi-detection layers and adaptive weight,MAH-YOLOv5)。方法 在网络预测头部中增加一个非显著目标检测层,提升网络对于像素占比极低、语义信息不足这类目标的感知能力;在特征提取骨干中融合注意力机制,调节卷积网络对特征信息不足目标的权重配比,使其更关注待检测的伪装目标;在网络训练过程中使用多尺度训练策略,进一步提升模型鲁棒性与泛化能力;定义了用于军事目标检测领域的漏警、虚警指标,并提出伪装目标综合检测指数。结果 实验在课题组采集的伪装数据集上进行训练和验证。结果表明,本文方法在自制数据集上的平均精度均值(mean average precision,... 相似文献
4.
迷彩伪装技术能有效降低目标的视觉显著度,对迷彩目标检测任务造成巨大的挑战.在RetinaNet检测框架的基础上,针对迷彩目标特性嵌入了空间注意力和通道注意力模块,并基于定位置信得分构建了新的预测框过滤算法,有效实现了对迷彩伪装人员的检测.在扩展后的伪装人员数据集上的实验表明,该模型将检测精度提升了8.7个百分点,达到了... 相似文献
5.
现有的弱监督检测方法主要采用多示例检测网络,但在这些方法中应用分类特征提取网络易使目标尤其是非刚性目标的检测结果收敛到目标最显著局部区域。提出一种基于双注意力擦除和注意力信息聚合的端到端的弱监督检测框架DAENet。双注意力擦除模块的目的在于擦除生成的最显著性局部前景区域和部分背景区域,以此来扩展目标显著性区域,使网络能够尽可能地关注目标整体,从而更好地捕获目标整体区域。此外,为准确定位不同目标区域并精确生成注意力擦除掩码,提出注意力信息聚合模块,该模块可提取通道的全局特征和局部特征,并引入空间依赖性进一步提高检测精度。通过将双注意力擦除和注意力信息聚合进行协同工作,从而更好地提高弱监督检测性能。在PASCAL VOC 2007和VOC 2012数据集上的实验结果表明,DAENet框架在两个数据集上的检测精度分别达到50.5%和47.4%,相比基准模型,在部分非刚性目标上的检测精度提高了约5%~20%。 相似文献
6.
现有基于深度学习的缺陷检测方法通常采用强监督学习策略,检测效果依赖于样本的数量和标注的质量.针对上述问题,提出弱监督学习下融合注意力机制的神经网络算法,仅使用图像级别标签便可同时预测缺陷的位置和概率.首先对多尺度感受野模块提取的特征应用特征融合网络,获取更多边缘细节信息;然后通过多层次的自编码器挖掘特征的深层语义信息;同时通过三线性全局注意力模块进一步细化浅层特征的空间位置信息;最后对浅层边缘特征和深层语义特征进行融合增强,得到最终的精细缺陷特征,达到高效准确的自动化表面缺陷检测的目的.基于PyTorch框架用KolektorSDD电转向器表面缺陷数据集验证所提算法,并与U-Net等缺陷检测算法进行对比.检测视觉效果显示,所提算法可以保留更多的细节纹理信息,能够有效扩大细微缺陷与复杂背景之间的特征差异.通过大量实验表明,该算法在复杂场景下比其他模型更为准确,其精准率、F1值和总体精度都有所提升. 相似文献
7.
骨干网络特征提取不充分以及浅层卷积层缺乏语义信息等往往导致了对于小目标检测的效果不佳,为提高小目标检测的精确性与鲁棒性,提出一种融合注意力机制的深层次小目标检测算法.首先,针对骨干网络特征提取能力不足的问题,选用Darknet-53作为特征提取网络,通过构建新的分组残差连接来替换原Darknet-53中的残差连接结构,... 相似文献
8.
伪装目标检测(camouflage object detection,COD)在众多领域中有着重要的应用前景。现有COD算法主要针对特征表达以及特征融合的问题进行研究,但是忽略了目标边缘特征的提取和推断目标真实区域的位置。针对上述问题,提出了基于边缘注意力及反向定位的伪装目标检测算法。算法由边缘注意力模块(edge attention module,EAM)、临近融合模块(close integration module,CIM)和反向定位模块(reverse positioning module,RPM)构成。EAM模块用于特征编码阶段,增强从Res2Net-50主干网络提取的多级特征的表达,突出边缘特征。CIM模块促进多层次特征的融合,减少特征信息丢失。使用RPM模块处理来自不同特征金字塔的粗糙预测图,反向定位目标的真实区域,推断出真实目标。在3个公开数据集上的实验表明,该算法优于其他8个最新模型。在COD10K数据集上,平均绝对误差(mean absolute error,MAE)达到了0.038。 相似文献
9.
针对单次多盒检测算法(SSD)对复杂背景下合成孔径雷达(SAR)图像舰船目标的检测容易出现误检或漏检情况,提出一种基于融合注意力机制与改进的SSD算法的目标检测方法。首先在SSD算法上引入ResNet网络并进行改进,以提供丰富的语义信息和细节信息,提高算法的鲁棒性;其次融合通道和空间注意力增强对舰船目标的辨认能力,抑制海杂波等干扰信息;同时改进损失函数来解决舰船密集分布时的漏检问题,提高网络训练效果。数据集上的实验表明,该方法平均准确率(mAP)为87.6%,比SSD算法提高了4.2个百分点,目标的漏检和误检明显减少。相比SSD算法,该算法对复杂背景下的舰船目标有较好的辨别能力和鲁棒性,抗干扰能力有所提升。 相似文献
10.
针对道路检测目标小、模型特征融合不充分等问题,提出了一种基于注意力机制和多尺度特征融合的道路目标检测算法MFFDM.该算法将Resnext50网络与注意力模块进行融合形成新的主干特征提取网络;其次,新增具有空间位置信息的底层检测层来匹配对小物体的检测;另外,利用反卷积模块及特征纹理提取模块设计多尺度特征融合网络DEFTFN.实验表明,与FCOS算法相比,该算法在KITTI数据集上的平均精度提升了 9.3%,对道路行人目标的检测精度提升明显,提升幅度达14.6%. 相似文献
11.
12.
随着卷积神经网络(Convolutional Neural Network,CNN)的不断发展,目标检测作为计算机视觉中最基本的技术,已取得了令人瞩目的进展.介绍了强监督目标检测算法对数据集标注精度要求高的现状.对基于弱监督学习的目标检测算法进行研究,按照不同的特征处理方法将该算法归为四类,并分析比较了各类算法的优缺点... 相似文献
13.
实时目标检测算法YOLOv3的检测速度较快且精度良好,但存在边界框定位不够精确、难以区分重叠物体等不足。提出了Attention-YOLO算法,该算法借鉴了基于项的注意力机制,将通道注意力及空间注意力机制加入特征提取网络之中,使用经过筛选加权的特征向量来替换原有的特征向量进行残差融合,同时添加二阶项来减少融合过程中的信息损失并加速模型收敛。通过在COCO和PASCAL VOC数据集上的实验表明,该算法有效降低了边界框的定位误差并提升了检测精度。相比YOLOv3算法在COCO测试集上的mAP@IoU[0.5:0.95]提升了最高2.5 mAP,在PASCAL VOC 2007测试集上达到了最高81.9 mAP。 相似文献
14.
基于光学伪装的数码迷彩是一种通过提取自然背景的纹理、颜色和层次等信息,并以数码像素点阵图案的形式表现出来的新型迷彩。文章对数码迷彩的研究发展现状、数码迷彩设计技术、伪装效果评价方法等做了全面系统的介绍。 相似文献
15.
显著性目标检测旨在准确检测和定位图像或视频中最引人注目的目标或区域,为更好地进行目标识别和场景分析提供帮助。尽管全监督显著性检测方法取得一定成效,但获取大规模像素级标注数据集十分困难且昂贵。弱监督检测方法利用相对容易获取的图像级标签或带噪声的弱标签训练模型,在实际应用中表现出良好效果。全面对比了全监督和弱监督显著性检测的主流方法和应用场景,重点分析了常用的弱标签数据标注方法及其对显著目标检测的影响。综述了弱监督条件下显著目标检测方法的最新研究进展,并在常用数据集上对不同弱监督方法的性能进行了比较。最后探讨了弱监督显著性检测在农业、医学和军事等特殊领域的应用前景,指出了该研究领域存在的问题及未来发展趋势。 相似文献
16.
由于缺少精确的边界框注释,弱监督目标检测器依赖预训练图像分类模型对候选区域进行分类.然而,预训练模型通常对具有鉴别性的区域而非完整的目标产生高响应,导致局部主导、实例丢失和非紧密框等问题.为此,文中提出基于多层次融合的弱监督目标检测网络,从增强对弱鉴别性空间特征的学习、类内样本特征丰富性和可信伪标签权重的角度提升检测性能.首先,幂池化层利用幂函数加权融合邻域内的激活值,减少弱鉴别性特征的信息损失.其次,特征混合方法随机融合候选区域的特征向量,丰富训练样本特征的多样性.最后,基于置信度的样本重加权策略融合预测值和伪标签的置信度,调节伪标签对训练的影响.在3个基准数据集上的实验表明文中网络性能较优. 相似文献
17.
基于深度学习的目标检测算法因其模型复杂度和对计算能力的要求,难以部署在移动设备等低算力平台上。为了降低模型的规模,提出一种轻量级目标检测算法。该算法在自顶向下的特征融合的基础之上,通过添加注意力机制构建特征金字塔网络,以达到更细粒度的特征表达能力。该模型以分辨率为320×320的图像作为输入,浮点运算量只有0.72 B,并在VOC数据集上取得了74.2%的mAP,达到了与传统单阶段目标检测算法相似的精度。实验数据表明,该算法在保持了检测精度的同时显著降低了模型运算量,更适合低算力条件下的目标检测。 相似文献
18.
为提升目标跟踪精度,设计一种基于注意力机制的无监督单目标跟踪算法。该算法使用DCFNet网络作为基本网络,通过前向跟踪和后向验证实现无监督跟踪。为结合上下文信息,引入特征融合方法,且将DCFNet网络每一层所提取的特征通过双线性池化调整分辨率以便进行特征融合;为关注不同特征通道上的关系,引入通道注意力机制SENet模块;设计一个反向逐帧验证方法,在反向验证中间帧的基础上再预测第一帧,进而减少判别位置的误差。在公共数据集OTB-2015上的测试结果显示,本算法AUC分数达60.6%,速度达61FPS。与无监督单目标跟踪UDT算法相比,所设计算法取得了更优的目标跟踪性能。 相似文献
19.
弱监督目标定位是指仅利用图像级的类别标注信息来训练目标定位器, 而不需要使用精确的目标位置标注信息来进行算法训练. 当前的一些方法往往只能定位出目标对象中最具鉴别性的部分而无法准确地标识出完整的目标对象, 或者易受背景无关信息干扰从而导致定位结果不精确. 为了解决上述问题, 提出一种基于注意力机制和类别层次结构的弱监督目标定位方法. 该方法通过对卷积神经网络的注意力图进行均值分割提取更完整的目标区域. 进一步, 通过类别层次结构网络实现对背景区域注意力的削弱, 从而提高对感兴趣目标的定位精度. 基于多个网络结构和公共数据集上的大量实验结果表明, 相比目前已有的弱监督定位方法, 所提方法在多个评价指标下均能够获得更好的定位效果. 相似文献
20.
针对细粒度图像分类任务中难以对图中具有鉴别性对象进行有效学习的问题,本文提出了一种基于注意力机制的弱监督细粒度图像分类算法.该算法能有效定位和识别细粒度图像中语义敏感特征.首先在经典卷积神经网络的基础上通过线性融合特征得到对象整体信息的表达,然后通过视觉注意力机制进一步提取特征中具有鉴别性的细节部分,获得更完善的细粒度特征表达.所提算法实现了线性融合和注意力机制的结合,可看作是多网络分支合作训练共同优化的网络模型,从而让网络模型对整体信息和局部信息都有更好的表达能力.在3个公开可用的细粒度识别数据集上进行了验证,实验结果表明,所提方法有效性均优于基线方法,且达到了目前先进的分类水平. 相似文献