首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MOS enhancement mode field effect transistors with a circular geometry and with drains offset from the gate by distances from 0.1 mil to 0.9 mil were implanted with boron ions to fill in the offset region and thus achieve perfect alignment (i.e., no overlap) between gate and drain. The energies used were 50 to 100 keV and a 4000 Å-thick aluminum gate acted as a mask to prevent ions from penetrating into the channel region. The best junctions were obtained with 100-keV ions, with the sheet resistances being typically 4000 ω/□ for the implanted region. This additional drain resistance was quite small compared to the channel resistance of the devices and so was not objectionable. Ordinary diffused MOSFET's were included on the same wafers for comparison with the ion implanted MOSFET's. It was found that the differences in noise, leakage, and drain breakdown voltage were not serious. The chief advantage of the ion implanted MOSFET is the extremely low feedback capacitance due to the lack of gate-drain overlap, but this advantage is difficult to exploit in a conventional package because of the package capacitance. However, a significant difference was noted in switching characteristics between diffused and ion implanted MOSFET's mounted on TO-18 headers.  相似文献   

2.
The advantages of using elevated S/D formed on oxide shallow trench isolation are studied in detail. By careful design, the short channel short channel effects can be suppressed by the elevated source/drain (S/D) structure. In addition, the S/D region parasitic capacitance is significantly suppressed by the silicon-on-insulator (SOI)-like S/D structure. Tradeoff between series resistance and gate-to-drain Miller capacitance can be achieved by carefully selecting the gate spacer thickness. With careful optimization of device geometry, both the gate-delay and power consumption can be significantly reduced together. Design guideline and potential performance gain with the S/D-on-insulator structure is discussed.  相似文献   

3.
A physically-based MOS transistor avalanche breakdown model   总被引:1,自引:0,他引:1  
A physically based breakdown model for MOSFET's is presented to rectify the unexplained experimental breakdown behaviors. The drain avalanche breakdown in the MOS transistor can be caused by either infinite multiplication (MI) or finite multiplication with positive feedback of the substrate current (MF) due to the impact ionization in the pinch-off region. The breakdown voltages of these two modes of breakdown have different dependencies on the biasing conditions and device parameters. For MI mode of breakdown, the breakdown voltage increases slowly with the gate voltage and can be approximated by the drain saturation voltage plus a constant offset. For MF mode of breakdown, the breakdown voltage decreases as the drain saturation current becomes larger. The calculated breakdown characteristics agree well with the measured ones for devices with effective channel length in the range of 0.44~10 μm  相似文献   

4.
A recessed-gate structure has been studied with a view to realizing normally off operation of high-voltage AlGaN/GaN high-electron mobility transistors (HEMTs) for power electronics applications. The recessed-gate structure is very attractive for realizing normally off high-voltage AlGaN/GaN HEMTs because the gate threshold voltage can be controlled by the etching depth of the recess without significant increase in on-resistance characteristics. With this structure the threshold voltage can be increased with the reduction of two-dimensional electron gas (2DEG) density only under the gate electrode without reduction of 2DEG density in the other channel regions such as the channel between drain and gate. The threshold-voltage increase was experimentally demonstrated. The threshold voltage of fabricated recessed-gate device increased to -0.14 V while the threshold voltage without the recessed-gate structure was about -4 V. The specific on-resistance of the device was maintained as low as 4 m/spl Omega//spl middot/cm/sup 2/ and the breakdown voltage was 435 V. The on-resistance and the breakdown voltage tradeoff characteristics were the same as those of normally on devices. From the viewpoint of device design, the on-resistance for the normally off device was modeled using the relationship between the AlGaN layer thickness under the gate electrode and the 2DEG density. It is found that the MIS gate structure and the recess etching without the offset region between recess edge and gate electrode will further improve the on-resistance. The simulation results show the possibility of the on-resistance below 1 m/spl Omega//spl middot/cm/sup 2/ for normally off AlGaN/GaN HEMTs operating at several hundred volts with threshold voltage up to +1 V.  相似文献   

5.
This is the first report of novel structures designated as recessed p-buffer (RPB) silicon carbide (SiC) metal semiconductor field effect transistors (MESFETs). Important parameters such as gate–source capacitance, short channel effect, DC trans-conductance, cut-off frequency, DC output conductance, drain current and breakdown voltage of the two structures, the source side-recessed p-buffer (SS-RPB) and drain side-recessed p-buffer (DS-RPB), are simulated and compared with the conventional recessed gate SiC MESFET. Our simulation results describe that reducing the channel thickness under the gate at the source side of the SS-RPB structure, improves the gate–source capacitance, DC trans-conductance, and cut-off frequency compared with DS-RPB and conventional structures. Short channel effects for the SS-RPB structure are improved compared with that of the DS-RPB structure. Also, the SS-RPB structure has smaller DC output conductance in comparison with the conventional and DS-RPB structures. However, saturated drain current and breakdown voltage in the DS-RPB structure is larger than those in the conventional and SS-RPB structures.  相似文献   

6.
A field-effect transistor is described that combines a short-gate MOSFET with a long-channel JFET in a cascode configuration. The composite device, a CASFET, can have a very low input capacitance due to the short gate of the MOSFET combined with the reduced Miller capacitance of the cascode. The long channel of the JFET insures that the CASFET has high output resistance. This paper discusses CASFET fabrication, performance, and modeling.  相似文献   

7.
文中设计了一个虚拟栅结构的VDMOS,该结构可以减小漏栅反馈电容Cras,使其接近于零.因此,对于相同的模块电压率,虚拟栅结构可以使MOS器件有一个更短的沟道,同时也因为有一个更大的栅漏交叠区域而使导通电阻减小.这样,器件跨导也可以提高.经过ISE仿真模拟,虚拟栅结构比原始分栅结构的击穿电压提高了近42%,而电流输出特性也更好更稳定.  相似文献   

8.
朱志炜  郝跃 《半导体学报》2005,26(10):1968-1974
对TLP(传输线脉冲)应力下深亚微米GGNMOS器件的特性和失效机理进行了仿真研究. 分析表明,在TLP应力下,栅串接电阻减小了保护结构漏端的峰值电压;栅漏交迭区电容的存在使得脉冲上升沿加强了栅漏交叠区的电场,栅氧化层电场随着TLP应力的上升沿减小而不断增大,这会导致栅氧化层的提前击穿. 仿真显示,栅漏交迭区的电容和栅串接电阻对GGNMOS保护器件的开启特性和ESD耐压的影响是巨大的. 该工作为以后的TLP测试和标准化提供了依据和参考.  相似文献   

9.
The surface potential effect on gate-drain avalanche breakdown in GaAs MESFET's is investigated with a two-dimensional device simulator. It is shown that the surface potential effect changes the potential distribution in GaAs MESFET's drastically and therefore plays an important role in determining drain breakdown voltage. In addition, two device structures producing high breakdown voltages, an offset gate structure and a recessed gate structure, are analyzed.  相似文献   

10.
A novel SPI (Self-aligned Pocket Implantation) technology has been presented, which improves short channel characteristics without increasing junction capacitance. This technology features a localized pocket implantation using gate electrode and TiSi2 film as self-aligned masks. An epi substrate is used to decrease the surface impurity concentration in the well while maintaining high latch-up immunity. The SPI and the gate to drain overlapped structure such as LATID (Large-Angle-Tilt Implanted Drain) technology allow use of the ultra low impurity concentration in the channel region, resulting in higher saturation drain current at the same gate over-drive compared to conventional device. The carrier velocity reaches 8×106 cm/sec and subthreshold slope is less than 75 mV/dec, which can be explained by low impurity concentration in the channel and in the substrate. The small gate depletion layer capacitance of SPI MOSFET was estimated by C-V measurement, and it can explain high performance such as small subthreshold slope. On the other hand, the problem and the possibility of low supply voltage operation have been discussed, and it has been proposed that small subthreshold slope is prerequisite for low power device operated at low supply voltage. In addition, the drain junction capacitance of SPI is decreased by 65% for N-MOSFET's, and 69% for P-MOSFET's both compared with conventional devices. This technology yields an unloaded CMOS inverter of 48 psec delay time at the supply voltage of 1.5 V  相似文献   

11.
A p-channel poly-Si/Si1-xGex/Si sandwiched conductivity modulated thin-film transistor (CMTFT) is proposed and demonstrated in this paper for the first time. This structure uses a poly-Si/Si1-xGex/Si sandwiched structure as the active layer to avoid the poor interface between the gate oxide and the poly-Si1-xGex material. Also an offset region placed between the channel and the drain is used to reduce the leakage current. Furthermore, the concept of conductivity modulation in the offset region is used to provide high on-state current. Results show that this structure provides high on-state current as well as low leakage current as compared to that of conventional offset drain TFTs. The on-state current of the structure is 1.3-3 orders of magnitude higher than that of a conventional offset drain TFT at a gate voltage of -24 V and drain voltage ranging from -15 to -5 V while maintaining comparable leakage current  相似文献   

12.
High-voltage thin-film transistors (TFTs) fabricated using CW-Ar laser annealed polycrystalline silicon have an offset gate structure between the source and gate and between the gate and drain. The breakdown voltage, transconductance, and leakage current in various size TFTs are described. These TFTs exhibited n-channel enhancement characteristics with a low-threshold voltage, and a breakdown voltage above 100 V could be obtained at an offset gate length of 20 μm. Active TFT circuits were fabricated with these high-voltage Si TFTs. These high-voltage TFT circuits can drive thin-film EL (electroluminescent display) at low signal voltage  相似文献   

13.
Both p- and n-channel poly-Si/Si1-xGex/Si sandwiched conductivity modulated thin-film transistors (CMTFTs) are demonstrated and experimentally characterized. The transistors use a poly-Si/Si1-xGex/Si sandwiched structure as the active layer to avoid the poor interface between the gate oxide and the poly-Si1-xGex material. Also an offset region placed between the channel and the drain is used to reduce the leakage current. Furthermore, the concept of conductivity modulation in the offset region is used to provide a high on-state current. Results show that the transistors provide a high on-state current as well as a low leakage current compared to those of conventional offset drain TFTs. The p- and n-channel CMTFTs can be combined to form CMOS drivers, which are very suitable for use in low temperature large area electronic systems on glass applications  相似文献   

14.
In this paper, a novel recessed gate metal–semiconductor field-effect transistor (RG-MESFET) is presented by modifying the depletion region and the electric field. The proposed structure improves the breakdown voltage, drain current and high frequency characteristics by embedding a lateral insulator region between drain and gate while is placed laterally into the metal gate and a silicon well exactly under the insulator region. We called this new structure as modified recess gate MESFET (MRG-MESFET). The radio frequency and direct current (DC) characteristics of the proposed structure is studied using numerical simulations and compared with a conventional MESFET (C-MESFET). The breakdown voltage, drain current DC transconductance and maximum power density of the proposed structure increase by 27%, 16.5%, 15% and 48%, respectively, relative to the C-MESFET. Also, the gate-source capacitance and the minimum noise figure of the proposed structure improve relative to the C-MESFET. The proposed structure can be used for high breakdown voltage, high saturation drain current, high DC transconductance, high power, high frequency, and low noise applications.  相似文献   

15.
The potential impact of high permittivity gate dielectrics on device short channel and circuit performance is studied over a wide range of dielectric permittivities (Kgate) using two-dimensional (2-D) device and Monte Carlo simulations. The gate-to-channel capacitance and parasitic fringe capacitances are extracted using a highly accurate three-dimensional (3-D) capacitance extractor. It is observed that there is a decrease in parasitic outer fringe capacitance and gate-to-channel capacitance in addition to an increase in internal fringe capacitance, when the conventional silicon dioxide is replaced by a high-K gate dielectric. The lower parasitic outer fringe capacitance is beneficial for the circuit performance, while the increase in internal fringe capacitance and the decrease in the gate-to-channel capacitance will degrade the short channel performance contributing to higher DIBL, drain leakage, and lower noise margin. It is shown that using low-K gate sidewalls with high-K gate insulators can decrease the fringing-induced barrier lowering. Also, from the circuit point of view, for the 70-nm technology generation, the presence of an optimum Kgate for different target subthreshold leakage currents has been identified  相似文献   

16.
Breakdown of gate dielectric is one of the most dangerous threats for reliability of MOSFET devices in operating conditions. Not only the gate leakage resulting from breakdown is a problem for power consumption issues, but the "on" drain current can be strongly affected. In this paper, we show that in recent technologies, featuring ultrathin gate dielectrics, the corruption of drain current due to breakdown can be modeled as the effect of a portion of channel being damaged by the opening of the breakdown spot. Devices featuring 2.2- and 3.5-nm-thick gate oxide and various channel widths are stressed by using a specialized setup, and the degradation of transistor parameters is statistically studied. The analysis shows that the radius of the damaged region responsible for drain current degradation can be estimated between 1.4 and 1.8 /spl mu/m.  相似文献   

17.
A semi-quantitative model for the lateral channel electric field in LDD MOSFET's has been developed. This model is derived from a quasi-two-dimensional analysis under the assumption of a uniform doping profile. A field reduction factor, indicating the effectiveness of an LDD design in reducing the peak channel field, is used to compared LDD structures with, without, and with partial gate/drain overlap. Plots showing the trade-off between, and the process-dependencies of, the field reduction factor (FRF) and the series resistance are presented for the three cases. Structures with gate/drain overlap are found to provide greater field reduction than those without the overlap for the same series resistance introduced. This should be considered when comparing the double-diffused and spacer LDD structures. It is shown that gate/drain offset can cause the rise of channel field and substrate current at large gate voltages. Good agreement with simulations is obtained.  相似文献   

18.
A technology for increasing both the two-terminal gate-drain breakdown and subsequently the three-terminal-off-state breakdown of AlInAs/GaInAs high-electron-mobility transistors (HEMTs) to record values without substantial impact on other parameters is presented. The breakdown in these structures is dependent on the multiplication of electrons injected from the source (channel current) and the gate (gate leakage) into the channel. In addition, holes are generated by high fields at the drain and are injected back into the gate and source electrodes. These phenomena can be suppressed by increasing the gate barrier height and alleviating the fields at the drain. Both have been achieved by incorporating a p+-2DEG junction as the gate that modulates the 2DEG gas and by utilizing selective regrowth of the source and drain regions by MOCVD. The 1-μm-gate-length devices fabricated have two-terminal gate-drain and three-terminal-off-state breakdown voltages of 31 V and 28 V, respectively  相似文献   

19.
A MOSFET with a maximum power of 200 W in a 5/spl times/5 mm/SUP 2/ chip which exhibits 20-A current, 3000-millimho transconductance and 100-V breakdown voltage has been developed. The features of the device structure are a vertical drain electrode which makes it possible to use most of the surface area for the source electrode, and a meshed gate structure which realizes an increase in the channel width per unit area. The p-channel device with an offset gate structure was fabricated from an n on p/SUP +/ epitaxial wafer by using polysilicon gate and ion implantation processes. The device can be operated stably at ambient temperatures up to 180/spl deg/C. While the bipolar transistor is a suitable power device in the low voltage region, the MOSFET looks more promising in the high voltage region than the V-FET and the bipolar transistor.  相似文献   

20.
The subthreshold radio-frequency (RF) characteristics of multi-finger nanoscale MOS transistors were studied by using the measured scattering (s) parameters. Small-signal circuit parameters were determined based on a simplified small-signal equivalent circuit model. We found that besides the source and gate resistances, most of the parameters such as the channel resistance, drain inductance and intrinsic capacitance are found to be significantly different to those in the saturation mode of operation. The subthreshold channel resistance increases and the drain inductance decreases as the finger number increases because of the more significant charge transport along the finger boundaries. In addition, the channel resistance can be governed by the drain-induced barrier lowering in a transistor with very short gate length. The equivalent intrinsic capacitance of the small-signal equivalent circuit is governed by the substrate resistance and capacitance which make the parameter extraction more difficult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号