首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Chromium is commonly found in huge quantities in tannery wastewaters. For this reason, the removal and recovery of the chromium content of tannery wastewaters is crucial for environmental protection and economic reasons. Removal and recovery of chromium were carried out by using low-cost potential adsorbents. For this purpose three types of activated carbon; C1, the waste generated from sugar industry as waste products and the others (C2, C3) are commercial granular activated carbon, were used. The adsorption process and extent of adsorption are dependent on the physical and chemical characteristics of the adsorbent, adsorbate and experimental condition. The effect of pH, particle size and different adsorbent on the adsorption isotherm of Cr(III) was studied in batch system. The sorption data fitted well with Langmuir adsorption model. The efficiencies of activated carbon for the removal of Cr(III) were found to be 98.86, 98.6 and 93 % for C1, C2 and C3, respectively. The order of selectivity is C1>C2>C3 for removal of Cr(III) from tannery wastewater. Carbon "C1" of the highest surface area (520.66 m(2)/g) and calcium content (333.3 mg/l) has the highest adsorptive capacity for removal of Cr(III). The results revealed that the trivalent chromium is significantly adsorbed on activated carbon collected from sugar industry as waste products and the method could be used economically as an efficient technique for removal of Cr(III) and purification of tannery wastewaters.  相似文献   

2.
In this study, the preparation of activated carbon from almond shell with H2SO4 activation and its ability to remove toxic hexavalent chromium from aqueous solutions are reported. The influences of several operating parameters such as pH, particle size and temperature on the adsorption capacity were investigated. Adsorption of Cr(VI) is found to be highly pH, particle size and temperature dependent. Four adsorption isotherm models namely, Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich were used to analyze the equilibrium data. The Langmuir isotherm provided the best correlation for Cr(VI) onto the almond shell activated carbon (ASC). Adsorption capacity was calculated from the Langmuir isotherm as 190.3 mg/g at 323 K. Thermodynamic parameters were evaluated and the adsorption was endothermic showing monolayer adsorption of Cr(VI). Five error functions were used to treat the equilibrium data using non-linear optimization techniques for evaluating the fit of the isotherm equations. The highest correlation for the isotherm equations in this system was obtained for the Freundlich isotherm. ASC is found to be inexpensive and effective adsorbent for removal of Cr(VI) from aqueous solutions.  相似文献   

3.
Adsorption isotherm and kinetics of methylene blue on activated carbon prepared from coconut husk were determined from batch tests. The effects of contact time (1-30 h), initial dye concentration (50-500 mg/l) and solution temperature (30-50 degrees C) were investigated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The equilibrium data were best represented by Langmuir isotherm model, showing maximum monolayer adsorption capacity of 434.78 mg/g. The kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models, and was found to follow closely the pseudo-second-order kinetic model. Thermodynamic parameters such as standard enthalpy (DeltaH degrees), standard entropy (DeltaS degrees) and standard free energy (DeltaG degrees) were evaluated. The adsorption interaction was found to be exothermic in nature. Coconut husk-based activated carbon was shown to be a promising adsorbent for removal of methylene blue from aqueous solutions.  相似文献   

4.
The low-cost activated carbon were prepared from Tamarind wood material by chemical activation with sulphuric acid for the adsorption of Pb(II) from dilute aqueous solution. The activated carbon developed shows substantial capacity to adsorb Pb(II) from dilute aqueous solutions. The parameters studied include physical and chemical properties of adsorbent, pH, adsorbent dose, contact time and initial concentrations. The kinetic data were best fitted to the Lagergren pseudo-first-order and pseudo-second order models. The isotherm equilibrium data were well fitted by the Langmuir and Freundlich models. The maximum removal of lead(II) was obtained 97.95% (experimental) and 134.22 mg/g (from Langmuir isotherm model) at initial concentration 40 mg/l, adsorbent dose 3g/l and pH 6.5. This high uptake showed Tamarind wood activated carbon as among the best adsorbents for Pb(II).  相似文献   

5.
The adsorption of p-nitrophenol (PNP) onto activated carbon fiber (ACF) was investigated in simulated wastewater in a batch system to evaluate the effects of solution pH, presence of sodium chloride, adsorbent doses and temperature. It was found that PNP adsorption amount depended on pH, sodium chloride content, adsorbent doses and temperature. Langmuir and Freundlich models were applied to describe the adsorption isotherms. Freundlich model agreed with experimental data well, indicating the possibility of more than just one monomolecular layer of coverage. SEM photographs of ACF before and after adsorption revealed that it was in part with multimolecular layers of coverage on ACF surfaces. The change of free energy, enthalpy, and entropy of adsorption were also evaluated for the adsorption process. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data. The experimental data fitted very well the pseudo-second-order kinetic model. Attempts were made to desorb PNP from ACF using dilute NaOH solution and water, and desorption efficiency was obtained to the extent of 92.7% with 0.025 M NaOH and water at 368 K.  相似文献   

6.
Adsorption capacity of Cr(VI) onto Hevea Brasilinesis (Rubber wood) sawdust activated carbon was investigated in a batch system by considering the effects of various parameters like contact time, initial concentration, pH and temperature. Cr(VI) removal is pH dependent and found to be maximum at pH 2.0. Increases in adsorption capacity with increase in temperature indicate that the adsorption reaction is endothermic. Based on this study, the thermodynamic parameters like standard Gibb's free energy (DeltaG degrees ), standard enthalpy (DeltaH degrees ) and standard entropy (DeltaS degrees ) were evaluated. Adsorption kinetics of Cr(VI) ions onto rubber wood sawdust activated carbon were analyzed by pseudo first-order and pseudo second-order models. Pseudo second-order model was found to explain the kinetics of Cr(VI) adsorption most effectively. Intraparticle diffusion studies at different temperatures show that the mechanism of adsorption is mainly dependent on diffusion. The rate of intraparticle diffusion, film diffusion coefficient and pore diffusion coefficient at various temperatures were evaluated. The Langmuir, Freundlich and Temkin isotherm were used to describe the adsorption equilibrium studies of rubber wood sawdust activated carbon at different temperatures. Langmuir isotherm shows better fit than Freundlich and Temkin isotherm in the temperature range studied. The result shows that the rubber wood sawdust activated carbon can be efficiently used for the treatment of wastewaters containing chromium as a low cost alternative compared to commercial activated carbon and other adsorbents reported.  相似文献   

7.
Activated carbon was prepared from almond husk by activating without (MAC-I) and with (MAC-II) H(2)SO(4) at different temperatures. The ability of the activated carbon to remove nickel(II) ions from aqueous solutions by adsorption has been investigated under several conditions such as pH, carbonisation temperature of husk, initial concentration of metal ions, contact time, and adsorbent concentration. Optimal conditions were pH 5.0, the carbonisation temperature of 700 degrees C, 50 min of contact time and adsorbent concentration of 5 g/l. The results indicate that the effective uptake of Ni(II) ions was obtained by activating the carbon, prepared from almond husk at 700 degrees C, through the addition of H(2)SO(4). The removal of Ni(II) were found to be 97.8% at initial concentration of 25mg/l and the adsorbent concentration of 5 g/l. When the adsorbent concentration was increased up to 40 g/l, the adsorption density decreased from 4.89 to 0.616 mg/g for MAC-II. In the isotherm studies, the experimental adsorption data fitted reasonably well the Langmuir isotherm for both MAC-I and MAC-II.  相似文献   

8.
In the present study, a novel activated carbon was prepared from low‐cost eucalyptus seeds, which was utilised for the effectively removal of toxic zinc from the water/wastewater. The prepared adsorbent was studied by Fourier transform infrared spectroscopy and scanning electron microscopic characterisation studies. Adsorption process was experimentally performed for optimising the influencing factors such as adsorbent dosage, solution pH, contact time, initial zinc concentration, and temperature for the maximum removal of zinc from aqueous solution. Adsorption isotherm of zinc removal was ensued Freundlich model, and the kinetic model ensued pseudo‐second order model. Langmuir monolayer adsorption capacity of the adsorbent for zinc removal was evaluated as 80.37 mg/g. The results of the thermodynamic studies suggested that the adsorption process was exothermic, thermodynamically feasible and impulsive process. Finally, a batch adsorber was planned to remove zinc from known volume and known concentration of wastewater using best obeyed model such as Freundlich. The experimental details showed the newly prepared material can be effectively utilised as a cheap material for the adsorption of toxic metal ions from the contaminated water.Inspec keywords: wastewater treatment, activated carbon, zinc, toxicology, regression analysis, Fourier transform infrared spectra, scanning electron microscopy, adsorption, pH, reaction kinetics, monolayers, thermodynamics, contaminationOther keywords: Zn, toxic metal ion adsorption, contaminated water, batch adsorber, exothermic process, thermodynamic process, Langmuir monolayer adsorption capacity, pseudosecond‐order model, kinetic model, Freundlich model, adsorption isotherm, aqueous solution, temperature value, initial zinc concentration, contact time, pH value, adsorbent dosage, scanning electron microscopic characterisation, Fourier transform infrared spectroscopy, nonlinear regression analysis, eucalyptus seed activated carbon, wastewater, toxic zinc removal  相似文献   

9.
In this study, sepiolite, fly ash and apricot stone activated carbon (ASAC) were used as adsorbents for the investigation of the adsorption kinetics, isotherms and thermodynamic parameters of the basic dye (Astrazon Blue FGRL) from aqueous solutions at various concentrations (100-300 mg/L), adsorbent doses (3-12 g/L) and temperatures (303-323 K). The result showed that the adsorption capacity of the dye increased with increasing initial dye concentration, adsorbent dose and temperature. Three kinetic models, the pseudo-first-order, second-order, intraparticle diffusion, were used to predict the adsorption rate constants. The kinetics of adsorption of the basic dye followed pseudo-second-order kinetics. Equations were developed using the pseudo-second-order model which predicts the amount of the basic dye adsorbed at any contact time, initial dye concentration and adsorbent dose within the given range accurately. The adsorption equilibrium data obeyed Langmuir isotherm. The adsorption capacities (Q0) calculated from the Langmuir isotherm were 181.5 mg/g for ASAC, 155.5 mg/g for sepiolite and 128.2 mg/g for fly ash at 303 K. Thermodynamical parameters were also evaluated for the dye-adsorbent systems and revealed that the adsorption process was endothermic in nature.  相似文献   

10.
A carbon rich adsorbent prepared from the reaction of sugar beet pulp with sulphuric acid and gas formed during carbonization process have been studied for Cr(VI) removal from aqueous solutions. The SO(2) rich gas was shown to be an excellent Cr(VI) reductant. The equilibrium and kinetic studies were conducted by using the carbonaceous adsorbent derived from sugar beet pulp. The lower pH favoured Cr(VI) adsorption but substantial Cr(VI) reduction was observed. The Langmuir and Freundlich isotherm models were applied and the Langmuir model best fit the equilibrium isotherm data. The maximum adsorption capacity of chromium calculated from Langmuir isotherm is about 24 mgg(-1) for 25 degrees C. The adsorption of Cr(VI) is an endothermic process and follows the pseudo-second-order rate kinetics. The sulphuric acid-carbonization is an economical method for particularly chromium removal because the gas generated during carbonization exhibits good Cr(VI) reduction properties and carbonaceous material obtained is an efficient Cr(VI) adsorbent.  相似文献   

11.
Adsorption of Cr(VI) onto spent activated clay (SAC), a waste produced from an edible oil refinery company, was investigated for its beneficial use in wastewater treatment. After pressure steam treatment, SAC was used as an adsorbent. The adsorption kinetic data were analyzed and fitted well in a pseudo-first-order equation and the rate of removal was found to speed up with decreasing pH and increasing temperature. Activation energy for the adsorption process was found to be 4.01–5.47 kcal/K mol. The Langmuir adsorption isotherm was used to fit the equilibrium data and the effect of pH, temperature and ionic strength were studied. The maximum adsorption capacities for Cr(VI) ranged from 0.743 to 1.422 mg/g for temperature between 4 and 40 °C under a condition of pH 2.0. The studies conducted show the process of Cr(VI) removal to be spontaneous at high temperature and endothermic in nature. From the waste utilization and environment point of view, the work carried out is important and useful. Results obtained can serve as baseline data for designing a treatment process using this low-cost adsorbent for the treatment of wastewater rich in Cr(VI).  相似文献   

12.
Activated carbon derived from rattan sawdust (ACR) was evaluated for its ability to remove phenol from an aqueous solution in a batch process. Equilibrium studies were conducted in the range of 25–200 mg/L initial phenol concentrations, 3–10 solution pH and at temperature of 30 °C. The experimental data were analyzed by the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. Equilibrium data fitted well to the Langmuir model with a maximum adsorption capacity of 149.25 mg/g. The dimensionless separation factor RL revealed the favorable nature of the isotherm of the phenol-activated carbon system. The pseudo-second-order kinetic model best described the adsorption process. The results proved that the prepared activated carbon was an effective adsorbent for removal of phenol from aqueous solution.  相似文献   

13.
Bamboo, an abundant and inexpensive natural resource in Malaysia was used to prepare activated carbon by physiochemical activation with potassium hydroxide (KOH) and carbon dioxide (CO(2)) as the activating agents at 850 degrees C for 2h. The adsorption equilibrium and kinetics of methylene blue dye on such carbon were then examined at 30 degrees C. Adsorption isotherm of the methylene blue (MB) on the activated carbon was determined and correlated with common isotherm equations. The equilibrium data for methylene blue adsorption well fitted to the Langmuir equation, with maximum monolayer adsorption capacity of 454.2mg/g. Two simplified kinetic models including pseudo-first-order and pseudo-second-order equation were selected to follow the adsorption processes. The adsorption of methylene blue could be best described by the pseudo-second-order equation. The kinetic parameters of this best-fit model were calculated and discussed.  相似文献   

14.
Biosorption of heavy metals can be an effective process for the removal of toxic chromium ions from wastewater. In this study, the batch removal of toxic hexavalent chromium ions from aqueous solution, saline water and wastewater using marine dried green alga Ulva lactuca was investigated. Activated carbon prepared from U. lactuca by acid decomposition was also used for the removal of chromium from aqueous solution, saline water and wastewater. The chromium uptake was dependent on the initial pH and the initial chromium concentration, with pH approximately 1.0, being the optimum pH value. Langmuir, Freundlich, Redlich-Peterson and Koble-Corrigan isotherm models were fitted well the equilibrium data for both sorbents. The maximum efficiencies of chromium removal were 92 and 98% for U. lactuca and its activated carbon, respectively. The maximum adsorption capacity was found to be 10.61 and 112.36 mg g(-1) for dried green alga and activated carbon developed from it, respectively. The adsorption capacities of U. lactuca and its activated carbon were independent on the type of solution containing toxic chromium and the efficiency of removal was not affected by the replacing of aqueous solution by saline water or wastewater containing the same chromium concentration. Two hours were necessary to reach the sorption equilibrium. The chromium uptake by U. lactuca and its activated carbon form were best described by pseudo second-order rate model. This study verifies the possibility of using inactivated marine green alga U. lactuca and its activated carbon as valuable material for the removal of chromium from aqueous solutions, saline water or wastewater.  相似文献   

15.
Wei L  Yang G  Wang R  Ma W 《Journal of hazardous materials》2009,164(2-3):1159-1163
The selective adsorption of Cr (VI) from the wastewater of Cr (VI)-Ni (II) by magnetically iron-nickel oxide was investigated in this study. Synthetic iron-nickel oxide magnetic particles in the co-sedimentation method were used as adsorbent to remove hexavalent chromium ions. The characteristic of adsorption was evaluated by Langmuir, Freundlich isotherm and Dubinin-Kaganer-Radushkevich (DKR) equations in the simulation wastewater of Cr (VI)-Ni (II) bi-system. The energy spectra and FT-IR analysis were used to test adsorbent before and after adsorption. The obtained results suggest that the uptake of chromium (VI) effect is obvious from phosphate anions and that from others is unobvious. The maximum adsorption capacity of hexavalent chromium is about 30 mg/g at pH 5.00+/-0.02, and it was reduced by increasing the total dissolved substance (TDS) of system. Adsorption energies E are about 10.310-21.321 kJ/mol which were obtained from DKR equation in difference TDS conditions. The regeneration shows that the iron-nickel oxide has good reuse performance and the hexavalent chromium was recycled. The major adsorption mechanism proposed was the ions exchange; however the surface coordination was a main role in the condition of TDS less than 200mg/L.  相似文献   

16.
In this work, equilibrium and kinetic adsorption of humic acid (HA) onto chitosan treated granular activated carbon (MGAC) has been investigated and compared to the granular activated carbon (GAC). The adsorption equilibrium data showed that adsorption behaviour of HA could be described reasonably well by Langmuir adsorption isotherm for GAC and Freundlich adsorption isotherm for MGAC. It was shown that pre-adsorption of chitosan onto the surface of GAC improved the adsorption capacity of HA changing the predominant adsorption mechanism. Monolayer capacities for the adsorption of HA onto GAC and MGAC were calculated 55.8 mg/g and 71.4 mg/g, respectively. Kinetic studies showed that film diffusion and intra-particle diffusion were simultaneously operating during the adsorption process for MGAC.  相似文献   

17.
Oak wood and oak bark chars were obtained from fast pyrolysis in an auger reactor at 400-450 °C. These chars were characterized and utilized for Cr(VI) remediation from water. Batch sorption studies were performed at different temperatures, pH values and solid to liquid ratios. Maximum chromium was removed at pH 2.0. A kinetic study yielded an optimum equilibrium time of 48 h with an adsorbent dose of 10 g/L. Sorption studies were conducted over a concentration range of 1-100mg/L. Cr(VI) removal increased with an increase in temperature (Q(Oak wood)(°): 25 °C = 3.03 mg/g; 35 °C = 4.08 mg/g; 45 °C = 4.93 mg/g and Q(Oakbark)(°): 25 °C = 4.62 mg/g; 35 °C = 7.43 mg/g; 45 °C = 7.51 mg/g). More chromium was removed with oak bark than oak wood. The char performances were evaluated using the Freundlich, Langmuir, Redlich-Peterson, Toth, Radke and Sips adsorption isotherm models. The Sips adsorption isotherm model best fits the experimental data [high regression (R(2)) coefficients]. The overall kinetic data was satisfactorily explained by a pseudo second order rate expression. Water penetrated into the char walls exposing Cr(VI) to additional adsorption sites that were not on the surfaces of dry char pores. It is remarkable that oak chars (S(BET): 1-3m(2)g(-1)) can remove similar amounts of Cr(VI) as activated carbon (S(BET): ~ 1000 m(2)g(-1)). Thus, byproduct chars from bio-oil production might be used as inexpensive adsorbents for water purification. Char samples were successfully used for chromium remediation from contaminated surface water with dissolved interfering ions.  相似文献   

18.
The simultaneous adsorption of hexavalent chromium (Cr(VI)) and trivalent arsenic (As(III)) in single component and binary systems has been studied by activated carbon (AC). The capacity of Cr(VI) in the single experiment is greater than that of As(III) onto AC. The effects of various parameters like initial concentration, pH and temperature have been considered in the experiment. Cr(VI) removal is pH dependent and found to be maximum at pH 2.0. While, As(III) is found to be maximum at pH 7.0 in the single adsorption experiment. In the binary adsorption of As(III), the uptake of As(III) is generally higher than the single uptake. In the single adsorption the maximum adsorption rate of As(III) is 34% and in the binary metal mixtures the maximum adsorption rate of As(III) is 40% while the initial concentration is 5mg/L. So in the binary system the Cr(VI) and As(III) are thought to be synergistic with respect to the single As(III) situation.  相似文献   

19.
Mahogany sawdust was used to develop an effective carbon adsorbent. This adsorbent was employed for the removal of direct dyes from spent textile dyeing wastewater. The experimental data were analysed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with the Langmuir model. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The equilibrium adsorption capacity of the sawdust carbon was determined with the Langmuir equation as well as the pseudo-second-order rate equation and found to be >300 mg dye per gram of the adsorbent. The most ideal pH for adsorption of direct dyes onto sawdust carbon was found to be 3 and below. The results indicate that the Mahogany sawdust carbon could be employed as a low cost alternative to commercial activated carbon in the removal of dyes from wastewater.  相似文献   

20.
The potential of activated carbons--powdered (PAC) and granular (GAC), for the adsorption of acrylonitrile (AN) at different initial AN concentrations (50相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号