首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Airlift pumps are devices with the ability to lift liquid phase by injecting the gas phase. Parameters that affect the performance of these pumps are divided into two groups. The first group contains design parameters such as diameter of the pipe, tapering angle of the upriser pipe, and the submergence ratio, which is the ratio of immersed length to the total length of the upriser. The second group includes operating parameters such as the gas flow rate, bubble diameter, bubble distribution, and inlet gas pressure. In this research, the performance of an airlift pump is investigated numerically for different submergence ratios and different diameter of the upriser pipe. For this purpose, an airlift pump with a riser length of 914 mm and different diameters (6, 8, and 10 mm) and seven tapering angles (0°, 0.25°, 0.5°, 1°, 1.5°, 2°, and 3°) is numerically modeled and analyzed. Different submergence ratios are used: 0.4, 0.6, and 0.8. The numerical results are compared with the existing experimental data in the literature and show reasonable agreement. The results indicate that decrease in size of the bubble diameter increases mass flow rate of liquid at constant submergence ratios. The present study reports the improved performance of this pump with decrease in bubble size and increase in angle of tapering upriser pipe. Moreover, the results show that the tapering upriser pipe with 3° tapering angle gives the highest efficiency at nearly all submergence ratios. Further, the highest efficiency of the pump is shown to be at the largest submergence ratio.  相似文献   

2.
The progressive change in the surface geometry of the component due to erosive wear affects the correct estimation of erosive wear performance and service life of the components handling particulate flows. The current study focuses on determining the change in the location of higher erosion on the bend surface during the pneumatic conveying of solids with continuous geometric modification due to erosive wear. Computational fluid dynamics (CFD) based erosion-coupled dynamic mesh methodology is adopted to simulate the time-dependent surface modification of the 90° bend geometry due to erosive wear. Available experimental data are used to validate the numerical results. Further, the erosion distribution and the location of the maximum erosion for different flow velocities, particle sizes, and bend radius ratios with the increase in solid throughput are investigated. It has been found that the modification in the bend geometry due to erosion influences the location of the maximum erosion. The increase in thickness loss due to erosion increases the variation in the location of the maximum erosion. Furthermore, an equation for predicting the location of maximum erosion of bend geometry is obtained based on the bend radius ratio and the thickness loss.  相似文献   

3.
Particle behavior in a turbulent circular-sectioned 90° bend under electrostatic field at three air flow rates (1600 L/min, 1100 L/min and 950 L/min, the corresponding bulk Reynolds numbers are 58,000, 40,000, 34,000) is simulated by a Large Eddy Simulation-Lagrangian particle tracking technique (LES-LPT) method coupled with electrostatic field model by Coulomb’s law. This numerical simulation is dedicated to study the electrostatic effect on particle behavior and erosion occurred in the dilute particle-laden bend flow. Forces considered acting on particles includes drag, lift, gravity and electrostatic force. Results obtained for the fluid phase are in good agreement with experimental and numerical data. Predictions show that electrostatic field does affect the particle motion in the pipe bend. At higher air flow rate with higher electrostatics at the inner arc the increasement of impact angle is lower than that at lower flow rate with lower electrostatics. The same conclusion can be found at the outer arc. In addition, electrostatic effect does increase particle-wall impact velocity while such trend decreases with flow rate. Erosion rate increases with increasing air flow rate, which is independent of electrostatics. However, given the same flow rate, the electrostatics reduces the occurrence of erosion at the bend. The erosion rate under electrostatic effect is found to approach that without electrostatics as the flow rate increases. Therefore, the effect of electrostatics on erosion decreases with the air flow rate.  相似文献   

4.
基于大涡模拟(LES)方法,结合WENO格式与自适应网格加密(AMR)技术及沉浸边界法(IBM),对来流马赫数为Ma =2.5条件下的平板上微型三角楔绕流流场进行了数值模拟。数值模拟表明微型三角楔涡流发生器可以显著改变超声速流体边界层结构。计算结果清晰地显示了三角楔上游分离区的流场结构和下游各涡的流态,同时计算表明,微楔对边界层控制过程中,其下游的流向涡对与涡环结构都起了重要作用,并对其作用过程进行了讨论。数值计算与相关实验结果相符,且提供了流场的重要细节,揭示了微楔的控制机理,可为超声速边界层控制研究提供重要支持。  相似文献   

5.
Spatial variation of sediment transport in an alluvial sand-bed river bend needs to be understood with its influencing factors such as bank erosion, secondary current formation, land spur and bed-material characteristics. In this study, detailed hydrographic surveys with Acoustic Doppler Current Profiler (ADCP) were conducted at an active erodible river bend to measure suspended load, velocity, bathymetric profile and characteristics of the bed material. Study indicates the presence of multi-thread flow in the channel bend. Local variation of sediment transport is primarily controlled by active bank erosion, land spur and sand bar formation. Vertical distribution of suspended sediment concentration follows a power function with normalized depth. Average bed-material concentration at the reach level is computed from observed sediment profiles, and is compared against various sediment transport functions. Results show that the sediment transport function suggested by Yang gives better predictions for this reach. Transverse bed slopes at critical survey transects were computed from the bathymetric data and evaluated with analytical approaches. Out of three analytical approaches used, Odgaard’s approach estimates the bed slopes fairly close to the observed one. These two functions are suitable in the Brahmaputra river for further morphological studies.  相似文献   

6.
The paper describes in detail a relatively sophisticated numerical approach, using the Boundary Element Method in conjunction with the Discrete Vortex Model, to represent the complex unsteady flow field around a bluff body with separating shear layers. Important steps in the numerical analysis of this challenging problem are discussed and a performance evaluation algorithm established. Of considerable importance is the effect of computational parameters such as number of elements representing the geometry, time-step size, location of the nascent vortices, etc., on the accuracy of results and the associated cost.As an example, the method is applied to the analysis of the flow around a stationary Savonius rotor. A detailed parametric study provides fundamental information concerning the starting torque time histories, evolution of the wake, Strouhal number, etc. A comparison with the wind tunnel test data shows remarkable correlation suggesting considerable promise for the approach.  相似文献   

7.
采用CFD数值模拟方法完成了圆柱绕流-涡激振动-行波壁流动控制全过程的数值模拟,重点研究行波壁流动控制方法对低雷诺数下两自由度弹性支撑单圆柱涡激振动的抑制作用。详细分析各阶段圆柱横向和流向位移、质心运动轨迹、升力和阻力系数等随频率比的变化。结果表明:行波壁圆柱的波谷处可以产生一系列稳定的随行波壁运动的小尺度旋涡,有效抑制圆柱表面分离涡的产生,达到消除圆柱绕流尾迹和抑制涡激振动的目的;在计算初始和中途启动的行波壁流动控制方法显著抑制了圆柱横向和流向振动、降低了圆柱升力系数脉动值和阻力系数均值,但阻力系数脉动值则明显增大。  相似文献   

8.
This paper is an extension of previous paper by Salman et al., where numerical simulations of particle motion in a dilute horizontal pipe were carried out and variation of aerodynamic forces described. A bend was added to the pipe and numerical simulation compared with experimental measurements on the new geometry. It was found that the bend causes an increase in mean particle velocity compared with a horizontal pipe. Results show that the number of impacts in the bend decreases as the velocity of the particle increases. The results from the simulation agree closely with the experimental time-of-flight measurements.  相似文献   

9.
The purpose of the study is to experimentally investigate flow fields generated by an acoustic levitator. This flow field has been observed using flow visualization, PIV method. In the absent of a drop, the flow field was strongly influenced by sound pressure level (SPL). In light of the interfacial stability of a levitated drop, SPL was set at 161–163 [dB] in our experiments. In the case of any levitated drop at a pressure node of a standing wave, the toroidal vortices were appeared around a drop and clearly observed the flow fields around the drop by PIV measurement. It is found that the toroidal vortices around a levitated drop were strongly affected by the viscosity of a drop. For more detailed research, experiments in the reduced gravity were conducted with aircraft parabolic flights. By comparison with experimental results in the earth and reduced gravity, it is also indicated that the configuration of the external flow field around a drop is most likely to be affected by a position of a drop as well.  相似文献   

10.
We present in this paper a detailed numerical study of the vortical flow structure in a confined lid-driven cavity which is defined by a depth-to-width aspect ratio of 1:1 and a span-to-width aspect ratio of 3:1. In this study we have carefully examined the computed data that the useful to gain an in-depth knowledge of the complex interactions among secondary eddies, primary eddies, and spiraling spanwise motions. Chief of conclusions drawn from this study is to explain how the secondary eddies are intimately coupled with the primary recirculating flow. We also enlighten in this paper why spiraling vortices inside the upstream secondary eddy tend to destabilize the incompressible flow system and aid development of laminar instabilities.  相似文献   

11.
张航  唐浩俊  莫威  李永乐 《工程力学》2023,40(6):131-143
以某拱桥为例,通过数值模拟研究了串列双矩形拱肋的气动干扰效应,及其对两截面气动力系数的影响。在对计算模型进行验证的基础上,进一步研究了截面宽高比、间距比和来流风攻角对拱肋周围流场的影响,并结合压力云图和湍动能云图解释了气动力系数的变化规律,讨论了不同宽高比截面的漩涡脱落频率与结构自振频率之间的关系,分析了两拱肋升力时程的差异对整体扭矩可能产生的增大效应。结果表明:串列拱肋间的气动干扰效应显著。受上游截面尾流的影响,下游截面的阻力系数明显减小,其值与漩涡的形态、能量大小、移动轨迹等因素密切相关。上、下游截面的升力时程在幅值和相位上存在明显差异,导致拱肋整体的力矩增大,其效应随宽高比或间距比的增大而明显加强,随风攻角的增大而有所降低。漩涡脱落频率随宽高比的增大呈先增大后减小的趋势,而受间距比、风攻角的影响有限。对漩涡脱落频率与宽高比的变化进行多项式拟合,结合结构的模态频率可为拱肋的气动外形设计提供参考。  相似文献   

12.
Elastic wave and energy propagation in angled beams   总被引:1,自引:0,他引:1  
This investigation comprises an experimental and numerical study of elastic wave propagation in angled beams. Axial impact by two strikers of different lengths was applied to three steel beams, each bent to incorporate a “V” section of different angle in the middle. Finite element simulation using ABAQUS was employed to examine details of the elastic waves generated in the impact tests. The numerical results correlated well with experimental data, and computational simulation was utilized to analyse the propagation of energy associated with the elastic waves. This demonstrated that after several reflections from and transmission across the bends energy is progressively smeared throughout the entire beam and does not concentrate at any particular segment; the bulk of the energy is conveyed via flexural waves. Numerical simulation of wave propagation in a beam with a single angle was also undertaken to study the energy associated with waves reflected from and transmitted across the bend, and how these are affected by the bend angle. The effects of input pulse duration, beam thickness and beam material properties on energy reflection and transmission at a bend are also discussed; this leads to the conclusion that when a longitudinal pulse of a particular frequency impinges on a bend, the ratio between its wavelength and the beam thickness governs the energy reflected from and transmitted across the bend. Moreover, the bend junction geometry (curvature) is found to have a significant influence on the energy reflected and transmitted, especially for obtuse bend angles.  相似文献   

13.
We have studied the energy flow patterns of the radiation emitted by an electric dipole located in between parallel mirrors. It appears that the field lines of the Poynting vector (the flow lines of energy) can have very intricate structures, including many singularities and vortices. The flow line patterns depend on the distance between the mirrors, the distance of the dipole to one of the mirrors and the angle of oscillation of the dipole moment with respect to the normal of the mirror surfaces. Already for the simplest case of a dipole moment oscillating perpendicular to the mirrors, singularities appear at regular intervals along the direction of propagation (parallel to the mirrors). For a parallel dipole, vortices appear in the neighbourhood of the dipole. For a dipole oscillating under a finite angle with the surface normal, the radiating tends to swirl around the dipole before travelling off parallel to the mirrors. For relatively large mirror separations, vortices appear in the pattern. When the dipole is off-centred with respect to the midway point between the mirrors, the flow line structure becomes even more complicated, with numerous vortices in the pattern, and tiny loops near the dipole. We have also investigated the locations of the vortices and singularities, and these can be found without any specific knowledge about the flow lines. This provides an independent means of studying the propagation of dipole radiation between mirrors.  相似文献   

14.
Combining and separating incompressible flow of Newtonian and inelastic Herschel–Bulkley fluids is studied numerically employing a semi-implicit Taylor–Galerkin pressure-correction algorithm, where steady solutions are obtained through a transient finite element procedure. The influence of inertia and fluid rheology is analysed on flow patterns, velocity fields and pressure drops for various flow configurations, with fixed geometric gap width that stimulates the merging and splitting in the flow. For Newtonian fluids and at larger levels of inertia, the appearance of vortices was observed, with an increase in velocity differences and pressure drops across the channel. In this case, the numerical procedure was verified with good agreement against previous numerical and experimental observations. To extend the consideration to non-Newtonian inelastic materials, the material rheological characteristics were approximated with the use of the Herschel–Bulkley fluid model, incorporating the Ostwald–de Waele power-law model and viscoplastic yield stress. Findings for unyielded power-law fluids reveal slight increase in the size of the vortices as power index (m) was decreased. Variation of the consistency index (k) shows strong influence on the streamline patterns with a rapid increase in the vortex formation as k was decreased. For Bingham model solutions, devoid of shear-thinning and increasing yield stress, a higher value of Reynolds number is required for equivalent levels of vortex formation; also one observes the appearance of yielded and unyielded regions. Under Herschel–Bulkley modelling, there was little change noted in the kinematics, but some was apparent in rheological response. Once more, observations reveal the tendency to eliminate vortices at larger yield stress levels, with the appearance of unyielded regions.  相似文献   

15.
In this paper, a new design of Swirl Tube Cleaner (STC) was introduced. The performance of an STC in terms of the separation efficiency and pressure drop was numerically investigated for different vane angles, vane lengths, and inlet velocities. The Reynolds stress turbulence model was used to detect the main flow structures of the highly swirling flow inside the STC. The discrete phase model that employs the Lagrangian frame of reference was utilized for particle tracking. The results are in good agreement with experimental data available in the literature. For all cases under investigation, the main flow characteristics of the STC consist of a hub vortex flow downstream of the back cone and tip vortices in the wake flow of the vanes. Around the initiation point of the vortex flow, the centrifugal accelerations are one order of magnitude higher than that of the upstream flow around vanes. The results show that the overall separation efficiency with the specified particle size distribution can reach 88% at a pressure drop lower than 250 [Pa] for the highest flow rate. Compared to traditional STCs, the new STC decreases the pressure drop by about 50% while enhancing overall separation efficiency by approximately 2%, considering the numerical accuracy.  相似文献   

16.
A simple model based on numerical simulations in bulk is used to examine the pinning characteristics of vortices in helium films adsorbed in the vicinity of substrate defects. The film profile in the absence of a vortex is first calculated including both the Van der Waals potential of a bump defect and surface tension. The displacement and ultimate de-pinning of a vortex line constrained within the profile is then followed as a function of an imposed superfluid flow. The behavior of the vortices lends insight into recent experimental results sensitive to the presence of pinned vortices and indicates that the relevant pinning sites are atomic in dimension.  相似文献   

17.
A numerical study of the flow in a two-dimensional 90° circular-arc bend is presented. The study is based on the solution of the governing equations using a finite volume technique. Both laminar and turbulent flows are considered. Particular attention is given to the occurrence and size of the separation regions and, in this respect, the effects of Reynolds number and bend radius to height ratio are discussed. The study includes the effect of a guide vane, placed in the bend, on the flow characteristics. It is shown that the emerging velocity distribution is more uniform than that associated with flow in a bend without a guide vane. The presence of a guide vane is shown to suppress the formation of regions of flow separation. Comparisons are made between the effects on the flow of two different designs of guide vane.  相似文献   

18.
Pneumatic conveying of powdered and granular materials is a very common transport technology across a broad range of industries, for example, chemicals, cosmetics, pharmaceuticals, and power generation. As the demands of these industries for greater efficiency increases and to comply with environmental regulations there is a need for a more fundamental understanding of the behavior of materials in pneumatic conveying systems. The approach presented in this article is to develop a model of a section of pneumatic conveying line, a horizontal or vertical 90° bend, in the commercial CFD software package FLUENT and to describe the multiphase flow behavior by the mixture or Eulerian method. Models of this type have been used in the past to show qualitative and quantitative agreement between model and experiment. The model results presented were compared with experimental data gathered from an industrial-scale pneumatic conveying test system. Broad qualitative agreement in trends and flow patterns were found. Quantitative comparisons were less uniform, with predictions from around 10% to 90% different from experimental results, depending on conveying conditions and bend orientation.  相似文献   

19.
Pneumatic conveying of powdered and granular materials is a very common transport technology across a broad range of industries, for example, chemicals, cosmetics, pharmaceuticals, and power generation. As the demands of these industries for greater efficiency increases and to comply with environmental regulations there is a need for a more fundamental understanding of the behavior of materials in pneumatic conveying systems. The approach presented in this article is to develop a model of a section of pneumatic conveying line, a horizontal or vertical 90° bend, in the commercial CFD software package FLUENT and to describe the multiphase flow behavior by the mixture or Eulerian method. Models of this type have been used in the past to show qualitative and quantitative agreement between model and experiment. The model results presented were compared with experimental data gathered from an industrial-scale pneumatic conveying test system. Broad qualitative agreement in trends and flow patterns were found. Quantitative comparisons were less uniform, with predictions from around 10% to 90% different from experimental results, depending on conveying conditions and bend orientation.  相似文献   

20.
Kerem Taştan 《Sadhana》2016,41(4):425-433
This study examined critical submergence for isolated and dual rectangular intakes. It is shown that the critical submergence for an isolated intake can be predicted by disregarding whole boundary blockages on the complete imaginary critical sink surface that is the combination of imaginary complete critical cylindrical and hemi-spherical sink surfaces. It is proposed that this theory can be applied to the rectangular intakes located in general geometrical and flow conditions (i.e., intake in still water, circulation imposed flow, non-developed cross-flow, multiple intakes, etc.) and that it does not require computation of blockages caused from flow boundaries. The concept of complete sink surface (disregarding whole boundary blockages) developed for an isolated intake was also applied to dual rectangular intakes. The agreement between available test data and theoretical results was found to be satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号