首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we present an artificial bee colony (ABC) algorithm for the economic lot scheduling problem modelled through the extended basic period (EBP) approach. We allow both power-of-two (PoT) and non-power-of-two multipliers in the solution representation. We develop mutation strategies to generate neighbouring food sources for the ABC algorithm and these strategies are also used to develop two different variable neighbourhood search algorithms to further enhance the solution quality. Our algorithm maintains both feasible and infeasible solutions in the population through the use of some sophisticated constraint handling methods. Experimental results show that the proposed algorithm succeeds to find the all the best-known EBP solutions for the high utilisation 10-item benchmark problems and improves the best known solutions for two of the six low utilisation 10-item benchmark problems. In addition, we develop a new problem instance with 50 items and run it at different utilisation levels ranging from 50 to 99% to see the effectiveness of the proposed algorithm on large instances. We show that the proposed ABC algorithm with mixed solution representation outperforms the ABC that is restricted only to PoT multipliers at almost all utilisation levels of the large instance.  相似文献   

2.
The particle swarm optimization (PSO) algorithm is an established nature-inspired population-based meta-heuristic that replicates the synchronizing movements of birds and fish. PSO is essentially an unconstrained algorithm and requires constraint handling techniques (CHTs) to solve constrained optimization problems (COPs). For this purpose, we integrate two CHTs, the superiority of feasibility (SF) and the violation constraint-handling (VCH), with a PSO. These CHTs distinguish feasible solutions from infeasible ones. Moreover, in SF, the selection of infeasible solutions is based on their degree of constraint violations, whereas in VCH, the number of constraint violations by an infeasible solution is of more importance. Therefore, a PSO is adapted for constrained optimization, yielding two constrained variants, denoted SF-PSO and VCH-PSO. Both SF-PSO and VCH-PSO are evaluated with respect to five engineering problems: the Himmelblau’s nonlinear optimization, the welded beam design, the spring design, the pressure vessel design, and the three-bar truss design. The simulation results show that both algorithms are consistent in terms of their solutions to these problems, including their different available versions. Comparison of the SF-PSO and the VCH-PSO with other existing algorithms on the tested problems shows that the proposed algorithms have lower computational cost in terms of the number of function evaluations used. We also report our disagreement with some unjust comparisons made by other researchers regarding the tested problems and their different variants.  相似文献   

3.
This study proposes particle swarm optimization (PSO) based algorithms to solve multi-objective engineering optimization problems involving continuous, discrete and/or mixed design variables. The original PSO algorithm is modified to include dynamic maximum velocity function and bounce method to enhance the computational efficiency and solution accuracy. The algorithm uses a closest discrete approach (CDA) to solve optimization problems with discrete design variables. A modified game theory (MGT) approach, coupled with the modified PSO, is used to solve multi-objective optimization problems. A dynamic penalty function is used to handle constraints in the optimization problem. The methodologies proposed are illustrated by several engineering applications and the results obtained are compared with those reported in the literature.  相似文献   

4.
Y. C. Lu  J. C. Jan  G. H. Hung 《工程优选》2013,45(10):1251-1271
This work develops an augmented particle swarm optimization (AugPSO) algorithm using two new strategies,: boundary-shifting and particle-position-resetting. The purpose of the algorithm is to optimize the design of truss structures. Inspired by a heuristic, the boundary-shifting approach forces particles to move to the boundary between feasible and infeasible regions in order to increase the convergence rate in searching. The purpose of the particle-position-resetting approach, motivated by mutation scheme in genetic algorithms (GAs), is to increase the diversity of particles and to prevent the solution of particles from falling into local minima. The performance of the AugPSO algorithm was tested on four benchmark truss design problems involving 10, 25, 72 and 120 bars. The convergence rates and final solutions achieved were compared among the simple PSO, the PSO with passive congregation (PSOPC) and the AugPSO algorithms. The numerical results indicate that the new AugPSO algorithm outperforms the simple PSO and PSOPC algorithms. The AugPSO achieved a new and superior optimal solution to the 120-bar truss design problem. Numerical analyses showed that the AugPSO algorithm is more robust than the PSO and PSOPC algorithms.  相似文献   

5.
This paper compares the performance of three swarm intelligence algorithms for the optimization of hard engineering problems. The algorithms tested were bacterial foraging optimization (BFO), particle swarm optimization (PSO), and artificial bee colony (ABC). Besides the regular BFO, two other variants reported in the literature were also included in the study: adaptive BFO and swarming BFO. Both PSO and ABC were tested using the regular algorithm and variants that include explosion (mass extinction). Three optimization problems of structural engineering were used: minimization of the cost of a welded beam, minimization of the construction cost of a pressure vessel, and minimization of the total weight of a 10‐bar plane truss. All problems are strongly constrained. The algorithms were evaluated using two criteria: quality of solutions and the number of function evaluations. The results show that PSO presented the best balance between these two criteria. For the optimization problems approached in this paper, we can also conclude that the explosion procedure resulted in no significant improvements. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
This article proposes the hybrid Nelder–Mead (NM)–Particle Swarm Optimization (PSO) algorithm based on the NM simplex search method and PSO for the optimization of multimodal functions. The hybrid NM–PSO algorithm is very easy to implement, in practice, since it does not require gradient computation. This hybrid procedure performed the exploration with PSO and the exploitation with the NM simplex search method. In a suite of 17 multi-optima test functions taken from the literature, the computational results via various experimental studies showed that the hybrid NM–PSO approach is superior to the two original search techniques (i.e. NM and PSO) in terms of solution quality and convergence rate. In addition, the presented algorithm is also compared with eight other published methods, such as hybrid genetic algorithm (GA), continuous GA, simulated annealing (SA), and tabu search (TS) by means of a smaller set of test functions. On the whole, the new algorithm is demonstrated to be extremely effective and efficient at locating best-practice optimal solutions for multimodal functions.  相似文献   

7.
This article presents a particle swarm optimizer (PSO) capable of handling constrained multi-objective optimization problems. The latter occur frequently in engineering design, especially when cost and performance are simultaneously optimized. The proposed algorithm combines the swarm intelligence fundamentals with elements from bio-inspired algorithms. A distinctive feature of the algorithm is the utilization of an arithmetic recombination operator, which allows interaction between non-dominated particles. Furthermore, there is no utilization of an external archive to store optimal solutions. The PSO algorithm is applied to multi-objective optimization benchmark problems and also to constrained multi-objective engineering design problems. The algorithmic effectiveness is demonstrated through comparisons of the PSO results with those obtained from other evolutionary optimization algorithms. The proposed particle swarm optimizer was able to perform in a very satisfactory manner in problems with multiple constraints and/or high dimensionality. Promising results were also obtained for a multi-objective engineering design problem with mixed variables.  相似文献   

8.
The reliability-redundancy optimization problems can involve the selection of components with multiple choices and redundancy levels that produce maximum benefits, and are subject to the cost, weight, and volume constraints. Many classical mathematical methods have failed in handling nonconvexities and nonsmoothness in reliability-redundancy optimization problems. As an alternative to the classical optimization approaches, the meta-heuristics have been given much attention by many researchers due to their ability to find an almost global optimal solutions. One of these meta-heuristics is the particle swarm optimization (PSO). PSO is a population-based heuristic optimization technique inspired by social behavior of bird flocking and fish schooling. This paper presents an efficient PSO algorithm based on Gaussian distribution and chaotic sequence (PSO-GC) to solve the reliability-redundancy optimization problems. In this context, two examples in reliability-redundancy design problems are evaluated. Simulation results demonstrate that the proposed PSO-GC is a promising optimization technique. PSO-GC performs well for the two examples of mixed-integer programming in reliability-redundancy applications considered in this paper. The solutions obtained by the PSO-GC are better than the previously best-known solutions available in the recent literature.  相似文献   

9.
Drilling path optimization is one of the key problems in holes-machining. This paper presents a new approach to solve the drilling path optimization problem belonging to discrete space, based on the particle swarm optimization (PSO) algorithm. Since the standard PSO algorithm is not guaranteed to be global convergent or local convergent, based on the mathematical model, the algorithm is improved by adopting the method to generate the stop evolution particle once again to obtain the ability of convergence on the global optimization solution. Also, the operators are proposed by establishing the Order Exchange Unit (OEU) and the Order Exchange List (OEL) to satisfy the need of integer coding in drilling path optimization. The experimentations indicate that the improved algorithm has the characteristics of easy realization, fast convergence speed, and better global convergence capability. Hence the new PSO can play a role in solving the problem of drilling path optimization.  相似文献   

10.
This study proposes a novel momentum-type particle swarm optimization (PSO) method, which will find good solutions of unconstrained and constrained problems using a delta momentum rule to update the particle velocity. The algorithm modifies Shi and Eberhart's PSO to enhance the computational efficiency and solution accuracy. This study also presents a continuous non-stationary penalty function, to force design variables to satisfy all constrained functions. Several well-known and widely used benchmark problems were employed to compare the performance of the proposed PSO with Kennedy and Eberhart's PSO and Shi and Eberhart's modified PSO. Additionally, an engineering optimization task for designing a pressure vessel was applied to test the three PSO algorithms. The optimal solutions are presented and compared with the data from other works using different evolutionary algorithms. To show that the proposed momentum-type PSO algorithm is robust, its convergence rate, solution accuracy, mean absolute error, standard deviation, and CPU time were compared with those of both the other PSO algorithms. The experimental results reveal that the proposed momentum-type PSO algorithm can efficiently solve unconstrained and constrained engineering optimization problems.  相似文献   

11.
混流装配线调度问题的离散粒子群优化解   总被引:2,自引:0,他引:2  
混流装配线调度问题是JIT生产中的一个重要问题。借鉴二进制遗传算法中的交叉操作过程,对传统的连续型粒子群算法进行改进,使其适用于离散问题的优化处理。然后以丰田公司的汽车组装调度函数作为目标函数,利用改进的离散粒子群算法进行求解。对比分析表明:新算法所得结果优于常用的目标追随法、遗传算法、模拟退火等方法。  相似文献   

12.
Weian Guo  Wuzhao Li  Qun Zhang  Lei Wang  Qidi Wu 《工程优选》2014,46(11):1465-1484
In evolutionary algorithms, elites are crucial to maintain good features in solutions. However, too many elites can make the evolutionary process stagnate and cannot enhance the performance. This article employs particle swarm optimization (PSO) and biogeography-based optimization (BBO) to propose a hybrid algorithm termed biogeography-based particle swarm optimization (BPSO) which could make a large number of elites effective in searching optima. In this algorithm, the whole population is split into several subgroups; BBO is employed to search within each subgroup and PSO for the global search. Since not all the population is used in PSO, this structure overcomes the premature convergence in the original PSO. Time complexity analysis shows that the novel algorithm does not increase the time consumption. Fourteen numerical benchmarks and four engineering problems with constraints are used to test the BPSO. To better deal with constraints, a fuzzy strategy for the number of elites is investigated. The simulation results validate the feasibility and effectiveness of the proposed algorithm.  相似文献   

13.
基于粒子群算法的空间直线度误差评定   总被引:3,自引:0,他引:3       下载免费PDF全文
提出了一种满足最小区域法的空间直线度误差评价的新方法--粒子群算法。根据最小区域条件,建立了空间直线的数学模型以及优化目标函数。阐述了粒子群优化算法的原理和实现方法,然后根据粒子群算法优化求解。实例表明该方法对于空间直线度误差评定等非线性优化问题能得到最优解,可用于三坐标测量机等测量系统的空间直线度误差测量的数据处理。  相似文献   

14.
Most real-world optimization problems involve the optimization task of more than a single objective function and, therefore, require a great amount of computational effort as the solution procedure is designed to anchor multiple compromised optimal solutions. Abundant multi-objective evolutionary algorithms (MOEAs) for multi-objective optimization have appeared in the literature over the past two decades. In this article, a new proposal by means of particle swarm optimization is addressed for solving multi-objective optimization problems. The proposed algorithm is constructed based on the concept of Pareto dominance, taking both the diversified search and empirical movement strategies into account. The proposed particle swarm MOEA with these two strategies is thus dubbed the empirical-movement diversified-search multi-objective particle swarm optimizer (EMDS-MOPSO). Its performance is assessed in terms of a suite of standard benchmark functions taken from the literature and compared to other four state-of-the-art MOEAs. The computational results demonstrate that the proposed algorithm shows great promise in solving multi-objective optimization problems.  相似文献   

15.
The partitioning of an image into several constituent components is called image segmentation. Many approaches have been developed; one of them is the particle swarm optimization (PSO) algorithm, which is widely used. PSO algorithm is one of the most recent stochastic optimization strategies. In this article, a new efficient technique for the magnetic resonance imaging (MRI) brain images segmentation thematic based on PSO is proposed. The proposed algorithm presents an improved variant of PSO, which is particularly designed for optimal segmentation and it is called modified particle swarm optimization. The fitness function is used to evaluate all the particle swarm in order to arrange them in a descending order. The algorithm is evaluated by performance measures such as run time execution and the quality of the image after segmentation. The performance of the segmentation process is demonstrated by using a defined set of benchmark images and compared against conventional PSO, genetic algorithm, and PSO with Mahalanobis distance based segmentation methods. Then we applied our method on MRI brain image to determinate normal and pathological tissues. © 2013 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 23, 265–271, 2013  相似文献   

16.
In this article, the use of some well-known versions of particle swarm optimization (PSO) namely the canonical PSO, the bare bones PSO (BBPSO) and the fully informed particle swarm (FIPS) is investigated on multimodal optimization problems. A hybrid approach which consists of swarm algorithms combined with a jump strategy in order to escape from local optima is developed and tested. The jump strategy is based on the chaotic logistic map. The hybrid algorithm was tested for all three versions of PSO and simulation results show that the addition of the jump strategy improves the performance of swarm algorithms for most of the investigated optimization problems. Comparison with the off-the-shelf PSO with local topology (l best model) has also been performed and indicates the superior performance of the standard PSO with chaotic jump over the standard both using local topology (l best model).  相似文献   

17.
No-wait flow-shop scheduling problems refer to the set of problems in which a number of jobs are available for processing on a number of machines in a flow-shop context with the added constraint that there should be no waiting time between consecutive operations of the jobs. The problem is strongly NP-hard. In this paper, the considered performance measure is the makespan. In order to explore the feasible region of the problem, a hybrid algorithm of Tabu Search and Particle Swarm Optimisation (PSO) is proposed. In the proposed approach, PSO algorithm is used in order to move from one solution to a neighbourhood solution. We first employ a new coding and decoding technique to efficiently map the discrete feasible space to the set of integer numbers. The proposed PSO will further use this coding technique to explore the solution space and move from one solution to a neighbourhood solution. Afterwards, the algorithm decodes the solutions to its respective feasible solution in the discrete feasible space and returns the new solutions to the TS. The algorithm is tested by solving a large number of problems available in the literature. Computational results show that the proposed algorithm is able to outperform competitive methods and improves some of the best-known solutions of the considered test problems.  相似文献   

18.
An approach based on an improved particle swarm optimization (PSO) algorithm is proposed for structural damage detection in this study. A disturbance is introduced in the evolution process to avoid the occurrence of premature. The present algorithm focuses on the mutation of global or individual best known positions to guide the swarm to escape from the local minimum. The feasibility and robustness of the modified PSO are verified by three different structures, including a beam, a truss and a plate. The results show that the method is efficient and effective for structural damage identification when measurement noise is considered.  相似文献   

19.
The paper examines new strategies for the implementation of genetic algorithms in a decomposition-based approach for design. In this approach, the design problem is decomposed into smaller-sized sub-problems, the solutions for which are obtained through co-evolution. The emphasis resides in evaluating methods for exchanging design information relevant to coordinating solutions of temporarily decoupled sub-problems. Methods based on modification of genetic makeup through experiential inheritance (exposure to another species), and through inter-species migration are investigated in this work. Different forms of design problem coupling are investigated, ranging from coupling through constraints only, to coupled objective and constraint functions. The proposed strategies are validated through implementation in representative algebraic and structural design problems.  相似文献   

20.
In this article, the particle swarm optimization (PSO) algorithm is modified to use the learning automata (LA) technique for solving initial and boundary value problems. A constrained problem is converted into an unconstrained problem using a penalty method to define an appropriate fitness function, which is optimized using the LA-PSO method. This method analyses a large number of candidate solutions of the unconstrained problem with the LA-PSO algorithm to minimize an error measure, which quantifies how well a candidate solution satisfies the governing ordinary differential equations (ODEs) or partial differential equations (PDEs) and the boundary conditions. This approach is very capable of solving linear and nonlinear ODEs, systems of ordinary differential equations, and linear and nonlinear PDEs. The computational efficiency and accuracy of the PSO algorithm combined with the LA technique for solving initial and boundary value problems were improved. Numerical results demonstrate the high accuracy and efficiency of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号