共查询到19条相似文献,搜索用时 78 毫秒
1.
BP神经网络算法预测及其在飞参数据分析中的应用 总被引:1,自引:0,他引:1
针对飞机喘振参数受随机因素影响的特点,提出了用人工神经网络中BP网络对飞机发动机喘振预测.通过对喘振数据及机组实际振动数据的预测结果检验,证明该神经网络预测有利于飞机发动机喘振状态的预测精度. 相似文献
2.
BP神经网络模型是一种典型的前向型神经网络,具有良好的自学习、自适应、联想记忆、并行处理和非线形转换的能力,是目前应用最为广泛的一种神经网络模型。本文介绍了BP神经网络的实现以及其在数据挖掘分类方面的应用。 相似文献
3.
4.
实际工业过程具有强非线性非高斯噪声等特点,粒子滤波是一种常用的状态估计方法。带约束粒子滤波通过极大后验概率密度函数原则,将超出约束区域的状态估计值映射到约束区域,保证了状态估计的有效性。本文针对检测值部分缺失和全部缺失两种情况,提出一种缺失数据下的带约束粒子滤波算法。该算法基于贝叶斯原理,分别从先验粒子权值的计算以及状态估计值的映射两方面考虑了缺失数据的影响。仿真例子验证了该算法的有效性。 相似文献
5.
神经网络在状态估计中的应用 总被引:2,自引:0,他引:2
本文提出了一种基于神经网络的状态估计方法,避开了依靠数学模型的传统途径,为在那些建模困难的场合实现状态估计提供了可能,仿真结果令人满意. 相似文献
6.
7.
采用BP神经网络技术,将矿区的降雨量、排水量及前期水位三个因素作为输入层,矿山地下水位作为输出层,建立矿山地下水位预测模型.文章详细介绍了BP神经网络实现矿山地下水位预测的基本算法,将研究区矿山的长期观测孔实测水位作为实验数据并作出误差分析.最终成果能够达到矿山地下水位预测目的,并为分析地下水降落漏斗趋势提供有力依据. 相似文献
8.
为了探究基于PCA的BP神经网络异常数据识别在信息安全中的应用,以MATLAB软件为仿真平台,通过PCA和BP神经网络对KDDCUP99数据集中3种11类攻击进行了仿真实验.研究成果表明主成分分析法的降维算法能大大提升异常数据识别效率;BP神经网络又大大提高了信息安全系统的泛化能力和鲁棒性;仿真结果进一步证明这种将PC... 相似文献
9.
10.
针对飞参数据中存在的大量冗余和不相关,提出了一种基于神经网络的飞参数据特征选择方法.为克服传统算法收敛速度慢、易陷入局部极小等缺陷,神经网络的训练采用粒子群优化算法和Levenberg-Marquardt优化算法相结合的方式.神经网络训练结束后,先利用网络权值信息对飞参数据特征的相对重要度进行排序,然后根据重要度次序对飞参数据特征进行选择.实验结果表明该方法能快速有效地删除冗余飞参数据特征,同时提高网络的泛化能力. 相似文献
11.
12.
采用算法改进型的BP神经网络,选择叶绿素含量、磷、氮磷比、电导率和水温五个参数作为模型输入,以预测1日、3日和5日后的叶绿素含量为目标,构建了北京市长河水系水华短期预报系统。该系统三个周期的预测精度分别达到了97.2%、94%、88.3%,并且具有较好的泛化能力。相比于其它智能算法,BP神经网络结构简单、方便实用,仍然具有很强的应用性。 相似文献
13.
根据实际应用中神经网络训练样本通常具有内在特征和规律性,提出一种基于样本自组织聚类的BP神经网络预测模型。通过自组织竞争网络的聚类特征,改善样本训练对BP网络性能的影响。BP神经网络采用收敛速度较快和误差精度较高的动量—自适应学习速率调整算法。并通过基于这种模型的空气质量预测实验,表明基于样本自组织聚类的BP神经网络预测模型首先会提高收敛速度,其次会减少陷入局部最小的可能,提高预测精度。 相似文献
14.
提出了一种基于神经网络和粗集的数据挖掘新方法。首先利用粗集理论对原始数据进行一致性属性约简,然后使用神经网络对数据进行学习,并同时完成属性的不一致约简,最后再由粗集对神经网络中的知识进行规则抽取。该方法充分融合了粗集理论强大的属性约简、规则生成能力和神经网络优良的分类、容错能力。实验表明,该方法快速有效,生成规则简单准确,具有良好的鲁棒性。 相似文献
15.
为确保高维数据的神经网络分类精度,提出了先降维后分类的方法。采用主成分分析(PCA)法实现高维数据的降维。通过分析传统BP算法,提出分两步来更新网络权值的扰动BP学习方法。采用MATLAB对降维分类算法的分类精度和误差收敛速度进行分析。仿真结果显示:先降维再采用扰动BP网络进行高维数据分类可大大提高数据的分类精度和训练速度。 相似文献
16.
17.
18.
根据测井资料计算油页岩含油率多采用△logR法或改进的△logR法,这些方法中参数获取过程中易产生诸多误差,且这些方法是建立在油页岩含油率与特征测井曲线值是线性关系的基础上的,而在实际非均质性地层中,测井对油页岩含油率参数的响应在本质上必然是非线性的。基于此,运用BP神经网络来预测柴达木盆地北部地区侏罗纪油页岩含油率。首先分析研究区段测井数据的数理统计分布特征,在优选学习样本的基础上再采用一种基于LM( Levenberg-Marquardt)算法的BP神经网络进行含油率预测,最后得出一组由40个连接权值与11个阈值组成的含油率参数解释模型,油页岩含油率预测值与岩心实验室分析值吻合很好,均方误差能控制在0.1918。因此,运用此模型可以预测相同地质背景条件下的油页岩含油率。 相似文献
19.
粗糙集无需提供问题所需处理的数据集合之外的任何先验信息,是一种通过知识约简,消除冗余数据的软计算方法;BP神经网络是一种通过自身的学习机制自动形成所要求的决策区域技术.综合了粗糙集和BP神经网络的各自优势,构建了一种新颖的葡萄病害分类模型.测试结果表明,所建模型对葡萄病害分类是行之有效的. 相似文献