首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The semimetal-semiconductor transition is observed in glass-coated quantum single-crystal bismuth wires with diameters less than 70 nm due to the quantum size effect. It is found that elastic deformation of Bi nanowires (10 $\bar{1}$ 1) oriented along the wire axis with the semiconductor dependence R(T) leads to the approaching of L and T bands and to the semiconductor-semimetal transition; as a result, Shubnikov-de Haas oscillations appear on the magnetoresistance dependences R(H). It is shown that strong magnetic field and elastic deformation are the tools to control gap size in quantum bismuth wires, which is principal for their practical use in particular in thermoelectricity.  相似文献   

2.
In this paper, instrumented tension-impact (dynamic tensile) and instrumented Charpy impact test results for AISI 308 stainless steel welds at room temperature are reported. A few Charpy specimens precracked to a/W (crack length to width ratio) ratios of 0.42 to 0.59 were also tested. Dynamic yield strength obtained from tension-impact test agrees well with that from Charpy V-notch specimens. The strain rates obtained during the tension-impact test are compared with the various estimates of strain rates for V-notch and precracked Charpy specimens. A variation of the compliance changing rate method was necessary for determining the crack initiation point while crack growth was determined by power law key-curve procedure. J-R curves thus obtained from Charpy (precracked and V-notch) specimens are compared with those computed using handbook procedures using dynamic tensile results. Key words: Tension-impact testing, 308 stainless steel weld, Charpy V-notch, dynamic fracture toughness, dynamic yield strength, J-R curve, strain rate, key-curve.  相似文献   

3.
A molecular dynamics study of the effect of increasing molecular chain stiffness on the dynamic properties of single linear chains and polymer melts is presented. The chain stiffness is controlled by a bending potential. By means of a normal mode analysis the systematic crossover behavior of coarse-grained linear polymer systems from Rouse modes to bending modes with increasing mode number p is presented systematically for the first time via simulation data. The magnitude and the onset of the region where crossover behavior occurs is investigated in dependence of a systematic variation of the chains’ persistence lengths. For long wavelength modes the well-known p −2 behavior is observed which represents the Rouse scaling, whereas for the bending modes one observes a distinct p −4 scaling of the mean square mode amplitudes and the relaxation times. Additionally, the effect of this crossover behavior on the monomer dynamics given by their mean square displacements is investigated. The findings are contrasted with previous simulation studies of semiflexible chain behavior and it is shown that those studies—due to too small persistence lengths L p —were actually limited to the crossover regime where both, Rouse and bending modes contribute to the chain dynamics, and no distinct p −4 scaling can be observed. Using an expansion of the monomer position vector, a simple theory of the observed scaling behavior is proposed which allows for deriving analytic expressions that describe the presented simulation data very well.  相似文献   

4.
Engineering model development involves several simplifying assumptions for the purpose of mathematical tractability, which are often not realistic in practice. This leads to discrepancies in the model predictions. A commonly used statistical approach to overcome this problem is to build a statistical model for the discrepancies between the engineering model and observed data. In contrast, an engineering approach would be to find the causes of discrepancy and fix the engineering model using first principles. However, the engineering approach is time consuming, whereas the statistical approach is fast. The drawback of the statistical approach is that it treats the engineering model as a black box and therefore, the statistically adjusted models lack physical interpretability. This article proposes a new framework for model calibration and statistical adjustment. It tries to open up the black box using simple main effects analysis and graphical plots and introduces statistical models inside the engineering model. This approach leads to simpler adjustment models that are physically more interpretable. The approach is illustrated using a model for predicting the cutting forces in a laser-assisted mechanical micro-machining process. This article has supplementary material online.  相似文献   

5.
Xu B  Pan BC 《Nanotechnology》2008,19(7):075706
The interaction between individual Ga atoms and the inner walls of both (8, 8) and (12, 0) carbon nanotubes (CNTs) is investigated using first principles calculations based on the density functional theory. We find that a single Ga atom favorably adsorbs at the center site (H) of a hexagonal ring and diffuses on the inner wall of a perfect CNT with very low energy barriers. In the case of CNTs containing monovacancies, a single Ga?atom can heal the topological structure of a monovacancy in a (8, 8) CNT but not in a (12, 0) CNT. Our calculations show that the Ga atom adsorbed at the monovacancy in the CNT can alter the electronic structure of the tube significantly.  相似文献   

6.
Yi C  Fong CC  Zhang Q  Lee ST  Yang M 《Nanotechnology》2008,19(9):095102
Ribonucleic acid (RNA) is an important genetic material whose lifetime is most often determined by the rate of its enzymatic degradation. Our studies showed that multi-walled carbon nanotubes and single-walled carbon nanotubes functionalized with carboxylic groups interacted with ribonuclease A (RNase A) and caused the reduction of its activity by changing its conformation, thus protecting RNA from enzymatic cleavage. The results showed that RNase A was less active on the carbon nanotube surface than in free solution, and the activity was decreased further on larger carbon nanotubes, suggesting that carbon nanotubes with various surface modifications may be useful in RNA extraction, purification, and manipulation.  相似文献   

7.
This review addresses the quantum mechanical nature of the formation and stability of ultrathin metal films. The competition between quantum confinement, charge spilling effects, and Friedel oscillations determines whether an atomically smooth metal film will be marginally, critically, or magically stable or totally unstable against roughening. Pb(111) films represent a special case, not only because of strong quantum oscillations in the stability of two-dimensional thin films but also because of the exceptionally fast coarsening of Pb nanoclusters. The latter appears to be due to the combined effects of size quantization and the existence of a unique mass exchange medium in the form of an unusually dense and highly dynamic wetting layer. The consequences of size quantization on the physical and chemical properties of the films are profound, some of which will be highlighted in this review.  相似文献   

8.
Total magnetostriction in the superconducting state for high T c superconductors has been separated into critical state and paramagnetic components in terms of a H(x) dependent magnetic flux density. We show that the paramagnetic part is χ(2+χ)〈H(x)2〉, where χ is paramagnetic susceptibility. We have reproduced successfully ΔL/LH a curves measured by de la Fuente et al. (Phys. C 244:214, [1995]), in which they clearly observed coexistence of superconductivity and paramagnetism, employing the concepts presented in this work.   相似文献   

9.
It has been demonstrated in the past that observing the β-decay spectrum of 187Re with microbolometers provides a suitable method to determine the mass of the electron anti-neutrino from β-endpoint measurements. In a first step, with the experiment MIBETA a sensitivity of m νe≤15 eV/c2 was achieved. To compete with the sensitivity of m νe≤2.2 eV/c2 established by the Mainz/Troitsk tritium β-decay experiment and the limit of m νe≤0.2 eV/c2 aimed at with KATRIN, a new experiment MARE has been initiated. As a first stage (MARE-1), 300 detectors consisting of silicon implanted thermistors, produced by NASA/GSFC, and absorbers of AgReO4 crystals will be mounted. To optimize the experimental setup, a test array was equipped with 10 AgReO4 crystals of various size and shape. The influence of the crystal quality as well as of different types of resin on rise time and energy resolution was investigated.   相似文献   

10.
The whole collective mode spectrum in axial and planar phases of superfluid 3He with dispersion corrections is calculated for the first time. In axial A-phase the degeneracy of clapping modes depends on the direction of the collective mode momentum k with respect to the vector l (mutual orbital moment of Cooper pairs), namely: the mode degeneracy remains the same as in case of zero momentum k for kl only. For any other directions there is a threefold splitting of these modes, which reaches maximum for k l. In planar 2D-phase, which exists in the magnetic field (at H>H C ) we find that for clapping modes the degeneracy depends on the direction of the collective mode momentum k with respect to the external magnetic field H, namely: the mode degeneracy remains the same as in case of zero momentum k for kH only. For any other directions different from this one (for example, for k H) there is twofold splitting of these modes. The obtained results imply that new interesting features can be observed in ultrasound experiments in axial and planar phases: the change of the number of peaks in ultrasound absorption into clapping mode. One peak, observed for these modes by Ling et al. (J. Low Temp. Phys. 78:187, 1990), will split into two peaks in a planar phase and into three peaks in an axial phase under the change of ultrasound direction with respect to the external magnetic field H in a planar phase and with respect to the vector l in an axial phase. In planar phase, some Goldstone modes in the magnetic field become massive (quasi-Goldstone) and have a similar twofold splitting under the change of ultrasound direction with respect to the external magnetic field H. The obtained results as well will be useful under interpretation of the ultrasound experiments in axial and planar phases of superfluid 3He.  相似文献   

11.
We study the coupled problem of deformation due to mechanical and thermal loading of a composite cylinder made up of two layers of linear isotropic viscoelastic materials. The effect of a time-varying temperature field due to unsteady heat conduction on the short term and long term material response is examined in terms of the stress, displacement, and strain fields. The material properties of the two layers of the composite cylinder at any given location and time are assumed to depend on the temperature at that location at that given instant of time. Sequentially coupled analyses of heat conduction and deformation of the viscoelastic composite cylinder are carried out. Analytical solutions for the stress, strain and displacement fields of the viscoelastic composite cylinder are obtained from the corresponding solution of the linear elasticity problem by applying the Correspondence Principle. We examine the discontinuity in the hoop stress and the radial strain at the interface of the two layers caused by mismatches in material properties, during transient heat conduction. We find that the discontinuities change over time as the mismatch in the moduli of the two layers changes due to the material properties which are time-dependent. We also investigate the effect of the thermal field on the time-dependent field variables in the composite body.  相似文献   

12.
The thermal conductivity of Manganin (Cu 86 %, Ni 2 %, Mn 12 %) in the range 10–50 mK was measured by means of a new method that uses a metal–insulator junction (M-I.J) of known characteristics to read temperatures at one end of the sample. The same power P that crosses the sample to measure its thermal resistance flows through the M-I.J. A suitable choice of the M-I.J allows the temperature T of the upper end of the sample to rise above 20 mK. T was measured by a small size Ruthenium thermometer.  相似文献   

13.
Within finite-range density-functional theory, we have addressed the infrared absorption and emission spectrum of electron bubbles attached to linear vortices in liquid 4He as a function of pressure. We have found that the presence of vortices affects very little the absorption spectrum, only causing a small shift in the 1s→2p peak. The energy of the lowest emission transition is also shown as a function of pressure for a vortex-free bubble and for a trapped bubble. In the emission energy the shift induced by the vortex line is proportionally bigger, especially when the waist around the electron probability density of the 1p state collapses, which happens at a pressure of ~8 bar.  相似文献   

14.
Xiao J  Liu B  Huang Y  Zuo J  Hwang KC  Yu MF 《Nanotechnology》2007,18(39):395703
The collapse and stability of carbon nanotubes (CNTs) have important implications for their synthesis and applications. While nanotube collapse has been observed experimentally, the conditions for the collapse, especially its dependence on tube structures, are not clear. We have studied the energetics of the collapse of single-?and multi-wall CNTs via atomistic simulations. The collapse is governed by the number of walls and the radius of the inner-most wall. The collapsed structure is energetically favored about a certain diameter, which is 4.12, 4.96 and 5.76?nm for single-, double-?and triple-wall CNTs, respectively. The CNT chirality also has a strong influence on the collapsed structure, leading to flat, warped and twisted CNTs, depending on the chiral angle.  相似文献   

15.
The FeSe material was prepared from pure components under inert gas atmosphere. Typically, synthesized material was HIP-ed under pressure of 0.45 GPa of 5N purity argon with use of the High Gas Pressure Trap System (HGPTS). The thin films were obtained by epitaxial process performed on substrates. Thin layers were manufactured by mixed procedures with the use of DC sputtering on the substrate from various types of targets. The FeSe0.88 material has T c from 8 to 12 K. It was synthesized at high Se vapor pressure at equilibrium conditions of pressure and temperature. The used HGPTS assure the full separation of the active inner volume for synthesis or crystal growth of material and the outside gas medium. The material has been investigated by SEM, EDX, XRD, magnetic susceptibility and resistivity measurements.  相似文献   

16.
The involvement of collagen in bone biomineralization is commonly admitted, yet its role remains unclear. Here we show that type I collagen in?vitro can initiate and orientate the growth of carbonated apatite mineral in the absence of any other vertebrate extracellular matrix molecules of calcifying tissues. We also show that the collagen matrix influences the structural characteristics on the atomic scale, and controls the size and the three-dimensional distribution of apatite at larger length scales. These results call into question recent consensus in the literature on the need for Ca-rich non-collagenous proteins for collagen mineralization to occur in vivo. Our model is based on a collagen/apatite self-assembly process that combines the ability to mimic the in vivo extracellular fluid with three major features inherent to living bone tissue, that is, high fibrillar density, monodispersed fibrils and long-range hierarchical organization.  相似文献   

17.
Based on the flux creep equation, the effect of critical current density and critical temperature on ac susceptibility is investigated numerically in a superconducting slab immersed in an ac magnetic field. The current density dependence of the flux creep activation barrier is employed as the logarithmic law. The fundamental ac susceptibilities of the slab as a function of temperature for the same ac field have been derived in a unified picture. The results show that ac susceptibility in flux creep regime is affected by critical current density and critical temperature.  相似文献   

18.
A new hemodialysis membrane manufactured by a blend of polyethersulfone (PES) and polyvinylpyrrolidone (PVP) was evaluated in vitro and in vivo. Goat was selected as the experimental animal. The clearance and the reduction ratio after the hemodialysis of small molecules (urea, creatinine, phosphate) for the PES membrane were higher in vitro than that in vivo. The reduction ratio of β2-microglobulin was about 50% after the treatment for 4 h. The biocompatibility profiles of the membranes indicated slight neutropenia and platelet adhesion at the initial stage of the hemodialysis. Electrolyte, blood gas, and blood biochemistry were also analyzed before and after the treatment. The results indicated that PES hollow fiber membrane had a potential widely use for hemodialysis.  相似文献   

19.
Microspheres have been prepared from the resorbable linear polyester of β-hydroxybutyric acid (polyhydroxybutyrate, PHB) by the solvent evaporation technique and investigated in vitro and in vivo. Biocompatibility of the microspheres has been proved in tests in the culture of mouse fibroblast cell line NIH 3T3 and in experiments on intramuscular implantation of the microspheres to Wistar rats for 3 months. Tissue response to the implantation of polymeric microspheres has been found to consist in a mild inflammatory reaction, pronounced macrophage infiltration that increases over time, involving mono- and poly-nuclear foreign body giant cells that resorb the polymeric matrix. No fibrous capsules were formed around polymeric microparticles; neither necrosis nor any other adverse morphological changes and tissue transformation in response to the implantation of the PHB microparticles were recorded. The results of the study suggest that polyhydroxybutyrate is a good candidate for fabricating prolonged-action drugs in the form of microparticles intended for intramuscular injection.  相似文献   

20.
In this research, we report the result of two different methods of making AZO films. In the first method, the AZO film was deposited on silicon wafer and glass substrate using a magnetic controlled RF sputtering system, with rf power (150 W) at two working pressures, 5 mtorr, and 10 mtorr, respectively. The deposition temperatures were 25, 100, 150, 200, and 300 °C, respectively. In the second method, the AZO film was made by sol-gel coating using (CH3COO)2 Zn⋅2H2O mixed with AlCl3⋅6H2O and melting in HOC2H4NH2 and CH3OC2H5OH solvent and annealing at N2 and/or 6% H2/Ar for one hour. The transparencies of the films are all larger than 80%, and the resistivities may reach 10−3 Ω cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号