首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes a noise filtering method for $Delta Sigma$ fractional- $N$ PLL clock generators to reduce out-of-band phase noise and improve short-term jitter performance. Use of a low-cost ring VCO mandates a wideband PLL design and complicates filtering out high-frequency quantization noise from the $Delta Sigma$ modulator. A hybrid finite impulse response (FIR) filtering technique based on a semidigital approach enables low-OSR $Delta Sigma$ modulation with robust quantization noise reduction despite circuit mismatch and nonlinearity. A prototype 1-GHz $Delta Sigma$ fractional-$N$ PLL is implemented in 0.18 $muhbox{m}$ CMOS. Experimental results show that the proposed semidigital method effectively suppresses the out-of-band quantization noise, resulting in nearly 30% reduction in short-term jitter.   相似文献   

2.
A sixth-order RF bandpass $DeltaSigma$ ADC operating on the 2.4 GHz ISM band, which is suitable for RF digitization is presented. The bandpass loop filter is based on digitally programmable $Gm$ $LC$ resonators that can be calibrated online to adjust the RF center frequency. By sampling below the input Nyquist frequency, the clock in the system was reduced to 3$~$ GHz, allowing a large reduction of the power consumption. Implemented in a standard 90 nm CMOS process, the IC achieves 40 $~$dB and 62 dB of SNDR and SFDR, respectively, on a 60 MHz bandwidth with 40 mW of power consumption leading to a FoM of 245 GHz/W (4.1 pJ/conversion step). This implementation paves a possible way towards direct RF digitization receiver architectures.   相似文献   

3.
This paper proposes a novel charge pump (CP) circuit and a gated-offset linearization technique to improve the performance of a delta-sigma $(Delta Sigma)$ fractional-$N$ PLL. The proposed CP circuit achieves good up/down current matching, while the proposed linearization method enables the PFD/CP system to operate at an improved linear region. The proposed techniques are demonstrated in the design of a 2.4-GHz $Delta Sigma$ fractional-$N$ PLL. The experimental results show these techniques considerably improve the in-band phase noise and fractional spurs. In addition, the proposed gated-offset CP topology further lowers the reference spurs by more than 8 dB over the conventional fixed-offset approach. This chip is implemented in the TSMC 0.18- $mu$m CMOS process. The fully-integrated $Delta Sigma$ fractional-$N$ PLL dissipates 22 mW from a 1.8-V supply voltage.   相似文献   

4.
We have developed an $N times N$ cyclic-frequency router with improved performance by employing two types of modified configuration; a uniform-loss and cyclic-frequency (ULCF) arrayed-waveguide grating (AWG) and an interconnected multiple AWG. We have demonstrated a compact 50-GHz-spacing 64 $,times,$64 ULCF-AWG router with low and uniform insertion losses of 5.4–6.8 dB and frequency deviations from the grid of less than $pm {8}~{rm GHz}$. We have also demonstrated a 100-GHz-spacing 8$,times,$8 interconnected multiple-AWG router with a practical configuration, very low and uniform insertion losses of 2.3–3.4 dB, and frequency deviations from the grid of less than $pm {6}~{rm GHz}$. We discuss the suitable or realizable scale $N$ of the two types of routers by comparison with a conventional AWG router in terms of optical and dimensional performance and productivity.   相似文献   

5.
We present an oscillator design method that reduces the area of $LC$ oscillators in extremely scaled CMOS technologies by taking advantage of the high $f_{T}$ of the transistors. The oscillator is scaled to operate at a higher frequency and is followed by a fixed-ratio divider. It maintains the same power consumption and performance for a given wanted output frequency while occupying a much smaller area. In principle, by scaling up the oscillation frequency $N$ times, a factor of $1/N^{2}$ can be obtained in inductor area reduction. Simulated results show that with uniformly scaled inductors, the figure of merit (FoM) of the scaled oscillators at 1, 2, 4, and 8 GHz can be within a 1-dB difference, whereas the figure of merit normalized for area (FoMA) improves with the oscillation frequency.   相似文献   

6.
We present a detailed experimental and theoretical study of the ultrahigh repetition rate AO $Q$ -switched ${rm TEM}_{00}$ grazing incidence laser. Up to 2.1 MHz $Q$-switching with ${rm TEM}_{00}$ output of 8.6 W and 2.2 MHz $Q$ -switching with multimode output of 10 W were achieved by using an acousto-optics $Q$ -switched grazing-incidence laser with optimum grazing-incidence angle and cavity configuration. The crystal was 3 at.% neodymium doped Nd:YVO$_{4}$ slab. The pulse duration at 2 MHz repetition rate was about 31 ns. The instabilities of pulse energy at 2 MHz repetition rate were less than ${pm}6.7hbox{%}$ with ${rm TEM}_{00}$ operation and ${pm}3.3hbox{%}$ with multimode operation respectively. The modeling of high repetition rate $Q$-switched operation is presented based on the rate equation, and with the solution of the modeling, higher pump power, smaller section area of laser mode, and larger stimulated emission cross section of the gain medium are beneficial to the $Q$-switched operation with ultrahigh repetition rate, which is in consistent with the experimental results.   相似文献   

7.
The fluctuation of RF performance (particularly for $f_{T}$ : cutoff frequency) in the transistors fabricated by 90-nm CMOS technology has been investigated. The modeling for $f_{T}$ fluctuation is well fitted with the measurement data within approximately 1% error. Low-$V_{t}$ transistors (fabricated by lower doping concentration in the channel) show higher $f_{T}$ fluctuation than normal transistors. Such a higher $f_{T}$ fluctuation results from $C_{rm gg}$ (total gate capacitance) variation rather than $g_{m}$ variation. More detailed analysis shows that $C_{rm gs} + C_{rm gb}$ (charges in the channel and the bulk) are predominant factors over $C_{rm gd}$ (charges in LDD/halo region) to determine $C_{rm gg}$ fluctuation.   相似文献   

8.
In this letter, a polycrystalline-silicon thin-film transistor (poly-Si TFT) with a high- $k$ $hbox{PrTiO}_{3}$ gate dielectric is proposed for the first time. Compared to TFTs with a $hbox{Pr}_{2}hbox{O}_{3}$ gate dielectric, the electrical characteristics of poly-Si TFTs with a $hbox{PrTiO}_{3}$ gate dielectric can be significantly improved, such as lower threshold voltage, smaller subthreshold swing, higher $I_{rm on}/I_{rm off}$ current ratio, and larger field-effect mobility, even without any hydrogenation treatment. These improvements can be attributed to the high gate capacitance density and low grain-boundary trap state. All of these results suggest that the poly-Si TFT with a high- $k$ $hbox{PrTiO}_{3}$ gate dielectric is a good candidate for high-speed and low-power display driving circuit applications in flat-panel displays.   相似文献   

9.
A new phase shifting network for both 180 $^{circ}$ and 90 $^{circ}$ phase shift with small phase errors over an octave bandwidth is presented. The theoretical bandwidth is 67% for the 180$^{circ}$ phase bit and 86% for the 90$^{circ}$ phase bit when phase errors are $pm 2^{circ}$. The proposed topology consists of a bandpass filter (BPF) branch, consisting of a LC resonator and two shunt quarter-wavelength transmission lines (TLs), and a reference TL. A theoretical analysis is provided and scalable parameters are listed for both phase bits. To test the theory, phase shifting networks from 1 GHz to 3 GHz were designed. The measured phase errors of the 180$^{circ}$ and the 90$^{circ}$ phase bit are $pm 3.5^{circ}$ and $pm 2.5^{circ}$ over a bandwidth of 73% and 102% while the return losses are better than 18 dB and 12 dB, respectively.   相似文献   

10.
Ultra-compact phase shifters are presented. The proposed phase-shifting circuits utilize the lumped element all-pass networks. The transition frequency of the all-pass network, which determines the size of the circuit, is set to be much higher than the operating frequency. This results in a significantly small chip size of the phase shifter. To verify this methodology, 5-bit phase shifters have been fabricated in the $S$ - and $C$ -band. The $S$ -band phase shifter, with a chip size of 1.87 mm $,times,$0.87 mm (1.63 mm $^{2}$), has achieved an insertion loss of ${hbox{6.1 dB}} pm {hbox{0.6 dB}}$ and rms phase-shift error of less than 2.8$^{circ}$ in 10% bandwidth. The $C$ -band phase shifter, with a chip size of 1.72 mm $,times,$0.81 mm (1.37 mm $^{2}$), has demonstrated an insertion loss of 5.7 dB $pm$ 0.8 dB and rms phase-shift error of less than 2.3 $^{circ}$ in 10% bandwidth.   相似文献   

11.
A 5-GHz dual-path integer-$N$ Type-II phase-locked loop (PLL) uses an LC voltage-controlled oscillator and softly switched varactors in an overlapped digitally controlled integral path to allow a large fine-tuning range of approximately 160 MHz while realizing a low susceptibility to noise and spurs by using a low $K_{rm VCO}$ of 3.2 MHz/V. The reference spur level is less than $-$70 dBc with a 1-MHz reference frequency and a total loop-filter capacitance of 26 pF. The measured phase noise is $-$75 and $-$115 dBc/Hz at 10-kHz and 1-MHz offsets, respectively, using a loop bandwidth of approximately 30 kHz. This 0.25-${hbox{mm}}^{2}$ PLL is fabricated in a 90-nm digital CMOS process and consumes 11 mW from a 1.2-V supply.   相似文献   

12.
The pulsed current–voltage ($I$$V$) measurement technique with pulse times ranging from $sim$17 ns to $sim$ 6 ms was employed to study the effect of fast transient charging on the threshold voltage shift $Delta V_{t}$ of MOSFETs. The extracted $Delta V_{t}$ values are found to be strongly dependent on the band bending of the dielectric stack defined by the high-$kappa$ and interfacial layer dielectric constants and thicknesses, as well as applied voltages. Various hafnium-based gate stacks were found to exhibit a similar trap density profile.   相似文献   

13.
Low-temperature polycrystalline-silicon thin-film transistors (LTPS-TFTs) with high- $kappa$ gate dielectrics and plasma surface treatments are demonstrated for the first time. Significant field-effect mobility $mu_{rm FE}$ improvements of $sim$86.0% and 112.5% are observed for LTPS-TFTs with $hbox{HfO}_{2}$ gate dielectric after $hbox{N}_{2}$ and $ hbox{NH}_{3}$ plasma surface treatments, respectively. In addition, the $hbox{N}_{2}$ and $ hbox{NH}_{3}$ plasma surface treatments can also reduce surface roughness scattering to enhance the field-effect mobility $mu_{rm FE}$ at high gate bias voltage $V_{G}$, resulting in 217.0% and 219.6% improvements in driving current, respectively. As a result, high-performance LTPS-TFT with low threshold voltage $V_{rm TH} sim hbox{0.33} hbox{V}$, excellent subthreshold swing S.S. $sim$0.156 V/decade, and high field-effect mobility $mu_{rm FE} sim hbox{62.02} hbox{cm}^{2}/hbox{V} cdot hbox{s}$ would be suitable for the application of system-on-panel.   相似文献   

14.
This letter presents the design and implementation of a wideband 24 GHz amplitude monopulse comparator in 0.13 $mu$m CMOS technology. The circuit results in 9.6 dB gain in the sum channel at 24 GHz with a 3-dB bandwidth of 23.0–25.2 GHz, and a sum/difference ratio of $> 25$ dB at 20–26 GHz. The measured input P1 dB is ${-}14.4$ dBm at 24 GHz. The chip is only 0.55$,times,$ 0.50 mm$^{2}$ (without pads) and consumes 44 mA from a 1.5 V supply, including the input active baluns and the differential to single-ended output stages (28 mA without the input and output stages). To our knowledge, this is the first demonstration of a high performance mm-wave CMOS monopulse comparator RFIC.   相似文献   

15.
We provide the first report of the structural and electrical properties of $hbox{TiN/ZrO}_{2}$/Ti/Al metal–insulator–metal capacitor structures, where the $hbox{ZrO}_{2}$ thin film (7–8 nm) is deposited by ALD using the new zirconium precursor ZrD-04, also known as Bis(methylcyclopentadienyl) methoxymethyl. Measured capacitance–voltage ($C$$V$) and current–voltage ( $I$$V$) characteristics are reported for premetallization rapid thermal annealing (RTP) in $hbox{N}_{2}$ for 60 s at 400 $^{circ}hbox{C}$, 500 $^{circ}hbox{C}$, or 600 $^{ circ}hbox{C}$. For the RTP at 400 $^{circ}hbox{C}$ , we find very low leakage current densities on the order of nanoamperes per square centimeter at a gate voltage of 1 V and low capacitance equivalent thickness values of $sim$ 0.9 nm at a gate voltage of 0 V. The dielectric constant of $ hbox{ZrO}_{2}$ is 31 $pm$ 2 after RTP treatment at 400 $^{circ}hbox{C}$.   相似文献   

16.
A diode-end-pumped $Q$ -switched mode-locking $hbox{Nd:GdVO}_{4}$ laser operating at 1.34 $mu{hbox {m}}$ with an acousto-optical (AO) Q-switch in a compact V-type cavity was realized in our experiment for the first time. When the AO Q-switch repetition rate was 10 kHz, the maximum average output power of 750 mW and the pulse energy of 75 $muhbox{J}$ were obtained at the maximum incident pump power of 9 W. The mode-locking modulation depth of about 100% was obtained at certain pump power over the threshold. The mode-locked pulse inside in the $Q$-switched pulse had a repetition rate of 341 MHz, and its average pulsewidth was estimated to be about 350 ps. A developed rate equation model for the $Q$ -switched and mode-locked lasers with an AO Q-switch were proposed by using the hyperbolic secant functional methods. The results of numerical calculations of the rate equations were in good agreement with the experimental results.   相似文献   

17.
Long and short buried-channel $hbox{In}_{0.7}hbox{Ga}_{0.3}hbox{As}$ MOSFETs with and without $alpha$-Si passivation are demonstrated. Devices with $alpha$-Si passivation show much higher transconductance and an effective peak mobility of 3810 $hbox{cm}^{2}/ hbox{V} cdot hbox{s}$. Short-channel MOSFETs with a gate length of 160 nm display a current of 825 $muhbox{A}/muhbox{m}$ at $V_{g} - V_{t} = hbox{1.6} hbox{V}$ and peak transconductance of 715 $muhbox{S}/muhbox{m}$. In addition, the virtual source velocity extracted from the short-channel devices is 1.4–1.7 times higher than that of Si MOSFETs. These results indicate that the high-performance $hbox{In}_{0.7}hbox{Ga}_{0.3} hbox{As}$-channel MOSFETs passivated by an $alpha$ -Si layer are promising candidates for advanced post-Si CMOS applications.   相似文献   

18.
This paper presents a comparative study of $Sigma Delta$ modulators for use in fractional-$ {N}$ phase-locked loops. It proposes favorable modulator architectures while taking into consideration not only the quantization noise of the modulator but also other loop nonidealities such as the charge pump current mismatch that contributes to the degradation in the synthesized tone's phase noise. The proper choice of the modulator architecture is found to be dependent upon the extent of the nonideality, reference frequency, and loop bandwidth. Three modulator architectures are then proposed for low, medium, and high levels of nonidealities.   相似文献   

19.
This paper describes the results of an implementation of a high speed $Delta Sigma$ ADC in 90 nm CMOS process, which is developed for a direct-conversion digital TV receiver. The $Delta Sigma$ ADC is based on a switched-capacitor fourth-order single-loop $Delta Sigma$ modulator with a 4-bit quantizer. The ADC uses a triple sampling technique and a two-step summation scheme for low power and high speed operation. Also, a digital signal processing block, including a decimation filter, a channel selection filter and a digital programmable gain amplifier (PGA), is implemented in the same process. The decimation filter is based on a polyphase IIR filter with a decimation ratio of 5, while the channel selection filter is based on two path lattice wave digital IIR filter. The ADC achieves 69.95 dB SNR and 66.85 dB SNDR over a 4 MHz bandwidth with a sampling frequency of 100 MHz. The fabricated $Delta Sigma$ ADC and the digital signal processing block occupy 0.53$~$mm$^2$ and 0.09 mm$^{2}$, and consume 11.76 mW per channel.   相似文献   

20.
$1times N$ active multimode-interferometer (MMI) laser diodes (LDs), with integrated phase-match region, are demonstrated as phase-locked array LDs. In general, the phase of output ports of MMI divider is not the same for all $N$ ports. This phase-mismatch leads to enormous excess loss inside the $1times N$ active MMI-LD cavity, which results in very low quantum efficiency or even no lasing. Therefore, we integrate the phase-match region, which can lead to regular lasing, without any enormous excess loss. The implemented 1$,times,$ 3 active MMI-LDs showed lasing with no enormous degradation of quantum-efficiency. Additionally, significant output power increase of 200 mW was observed, compared to the regular single stripe LDs fabricated simultaneously, with the phase-locked condition.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号