首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Mg-2Al-1.2Ca-0.2Mn(at%)-based alloys with Ce-rich mischmetal(MM) substitution of 0–0.6 at% for Ca were hot extruded at 400 °C. The effect of MM substitution on the microstructure and mechanical properties of the extruded alloys was investigated. The as-cast Mg-2Al-1.2Ca-0.2Mn alloy is mainly composed of a-Mg, Mg_2Ca and(Mg,Al)_2Ca phases and Al_8Mn_5 precipitates, whereas the substitution of MM brings about the formation of Al_(11)MM_3, Al_2MM phases and Al_(10)MM_2Mn_7 particles with the absence of (Mg,Al)_2Ca phase. The volume fraction of MM-containing phases increases with increasing MM contents. All of the extruded alloys exhibit bimodal microstructure comprising fine dynamically recrystallized grains with almost random orientation and coarse deformed grains with strong basal texture. Dense nanosized planar Al_2Ca and spherical Al–Mn phases precipitate inside the deformed grains. High tensile yield strengths of~ 350 MPa and moderate elongations to failure of 12% are obtained in all extruded alloys; the MM substitution induces negligible difference in the tensile properties at ambient temperature, while the highest MM substitution improves the strength at 180 °C due to the better thermal stability of the fragmented MM-containing phases.  相似文献   

2.
The phase relations and hydrogenation behavior of Sr(Al1−xMgx)2 alloys were studied. The pseudobinary C36-type Laves phase Sr(Al,Mg)2 was found as a structural intermediate between the Zintl phase and the C14 Laves phase. The single-phase regions for the Zintl phase, C36 phase and C14 phase, were determined to be x=0–0.10, 0.45–0.68 and 0.80–1, respectively. The Mg-substituted Zintl phase Sr(Al0.95Mg0.05)2 can be hydrogenated to Sr(Al,Mg)2H2 at about 473 K. However, the Sr(Al,Mg)2H2 directly decomposes into SrH2 and Sr(Al,Mg)4 starting at 513 K. When the temperature is 573 K, the C36 Laves phase Sr(Al0.5Mg0.5)2 can be hydrogenated into SrMgH4 and Al, while the C14 Laves phase Sr(Al0.1Mg0.9)2 is hydrogenated into SrMgH4, Mg17Al12 and Mg.  相似文献   

3.
4.
The decomposition reactions of neodymium phosphate, NdPO4, during mechanical milling (MM) have been studied. It has been found that under optimum conditions, NaOH, Ca(OH)2, CaO with CaCl2, and CaO with Ca(OH)2 decomposed NdPO4 completely, producing respectively Nd(OH)3 with Na3PO4, Nd(OH)3 with Ca5(PO4)3(OH), NdOCl with Ca5(PO4)3Cl and Nd2O3 with Ca5(PO4)3(OH). CaO by itself caused partial decomposition of NdPO4 to Nd2O3, with the formation of calcium neodymium phosphate oxide, Ca8Nd2(PO4)6O2. No chemical reactions occurred between NdPO4 and CaCl2, NaCl or Na2CO3 during milling. Powder X-ray diffractometry and transmission electron microscopy have been used to characterize the decomposition products. The Gibbs free-energy changes of all the reactions under study are calculated. It appears that the free-energy changes at room temperature (25 °C) and ambient pressure (1 atm) are crucial in determining whether reactions can occur during MM.  相似文献   

5.
通过在Mg-10Gd-2Y-0.5Zr合金中添加Zn,采用SEM、XRD及万能拉伸试验机,研究了Zn添加对其铸态组织和力学性能的影响。结果表明,Mg-10Gd-2Y-0.5Zr合金的铸态组织主要由α-Mg、Mg5(Gd,Y)和Mg24(Y,Gd)5相组成,而添加质量分数为0.5%~1.5%的Zn后,合金的铸态组织主要由α-Mg、Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5及Mg12(Gd,Y)Zn相组成。添加0.5%的Zn后,合金的室温力学性能明显提高,当Zn含量高于1.0%后,镁合金的室温力学性能开始逐步降低。当Zn含量为0.5%时,合金具有较佳的综合力学性能,其抗拉强度、屈服强度和伸长率分别为197 MPa、160 MPa和4.37%。Zn对Mg-10Gd-2Y-0.5Zr合金铸态力学性能的影响与其铸态组织中Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5和Mg12(Gd,Y)Zn第二相及其数量有关。  相似文献   

6.
Electrochemical properties of Mg-based alloys containing carbon nanotubes   总被引:5,自引:0,他引:5  
In this work, effects of partial substitution of Mg, Ni with AB2 in Mg-based alloy and subsequent surface modification by further ball-milling with carbon nanotubes (CNTs) on electrochemical properties were investigated. Mg1.9(AB2)0.1Ni0.8 (AB2=LaNi2, LaNiCo and LaNiMn) alloys were prepared by solid-state diffusion method, the nanocrystalline Mg-based alloys were prepared by ball-milling the mixture of obtained Mg1.9(AB2)0.1Ni0.8 alloys and nickel powder. It was found that the electrochemical capacities of nanocrystalline Mg1.9(AB2)0.1Ni1.8 alloys were measured to be 460–490 mAh/g. The nanocrystalline Mg-based alloys containing carbon nanotubes (10 wt.%) obtained by ball-milling after 60 min were demonstrated to show improved electrochemical properties with respect to the original nanocrystalline Mg-based alloys. The electrochemical reaction activity was detected by electrochemical impedance spectra (EIS). Raman and X-ray photoelectron spectroscopy (XPS) proved the interaction between Mg1.9(AB2)0.1Ni1.8 alloys and carbon nanotubes after ball-milling, which resulted in an increase in the surface Ni/Mg ratio.  相似文献   

7.
Four kinds of Mg alloys with different Zn and Ca concentration were selected to analyze the effect of Zn and Ca concentration on the microstructure and the mechanical properties of Mg–Zn–Ca alloys. It was found that Zn and Ca concentration has a great influence on the volume fraction, the morphology and the size of second phase. The Mg–1.95Zn–0.75Ca(wt%) alloy with the highest volume fraction, continuous network and largest size of Ca2Mg6Zn3 phase showed the lowest elongation to failure of about 7%, while the Mg–0.73Zn–0.12Ca(wt%) alloy with the lowest volume fraction and smallest size of Ca2Mg6Zn3 phase showed the highest elongation to failure of about 37%. It was suggested that uniform elongations of the Mg–Zn–Ca alloys were sensitive to the volume fraction of the Ca2Mg6Zn3 phases, especially the network Ca2Mg6Zn3phases; post-uniform elongations were dependent on the size of the Ca2Mg6Zn3 phase, especially the size of network Ca2Mg6Zn3 phase. Reduction in Zn and Ca concentration was an effective way to improve the roomtemperature ductility of weak textured Mg–Zn–Ca alloys.  相似文献   

8.
利用SEM,EPMA,XRD和DSC,对Mg-Zn-Ca系镁基固溶体400℃时的溶解度以及镁基固溶体与化合物之间的平衡相关系进行了研究.结果表明,在Mg-Zn系中加入Ca后,T1和T2相在400℃时依然是富Mg角的主要三元化合物,但只有T1相与镁基固溶体相平衡,且α-Mg+T1两相区明显缩小.400℃时,Mg-Zn-Ca系低Ca侧存在一个可与镁基固溶体相平衡的液相区,其含Ca量小于8.4%(原子分数);但Zn/Ca值小于1.7的三元合金中不会有液相存在.Mg-Zn-Ca系低Ca侧400℃等温截面相图中存在着4个三相区:α-Mg+Mg2Ca+T1,α-Mg+T1+Liq,Liq+T1+T2和Liq+T2+Mg2Zn3.  相似文献   

9.
利用静态失重法,电化学测试方法,结合SEM和XRD等方法,研究了CaO添加量为0,0.1%,0.5%和0.9%(质量分数) 的AZ81镁合金显微组织和耐腐蚀性能.结果表明:当CaO的添加量为0.5%时,合金的晶粒得到明显细化,合金主要由α-Mg基体和Mg17Al12相组成,同时在合金中生成了新相Al2Ca和Mg2Ca;随着CaO添加量的增加,AZ81镁合金在3.5%(质量分数)NaCl溶液中的腐蚀速率先降低后升高,自腐蚀电位先升高后降低,自腐蚀电流密度先减小后增大,当CaO的添加量为0.5%时合金的腐蚀速率和自腐蚀电流密度最小,自腐蚀电位最高,耐腐蚀性能最好.  相似文献   

10.
The influences of Ca and Y additions on the microstructure and corrosion resistance of vacuum die-cast AZ91 alloys were investigated by optical microscope,electron scanning microscope,weight-loss test,and electrochemical corrosion experiment.The results indicate that the Ca or Ca and Y additions refined the microstructure and decreased the amount of Mg17Al12 phase on grain boundaries in the alloys.Meanwhile,the addition of Ca and Y led to the formation of network Al2 Ca phase and rod-like Al2 Y phase,improved the corrosion resistance of AZ91 magnesium alloy.Compared with AZ91 alloy,the corrosion rate of AZ91–1.5Ca–1.0Y alloy was decreased to 16.2%,and its corrosion current density was dropped by one order of magnitude after immersion in 3.5 wt% NaCl solution for 24 h.  相似文献   

11.
Ca15(CBN)6(C2)2O contains CBN4− anions as well as C2 units and isolated O2− anions. The compound is obtained by heating a stoichiometric mixture of CaO, C and BN with an excess of Ca in sealed niobium ampoules to 1270 K. It crystallizes in the space group Ia d with a = 1656.84(9) pm. Preparation, crystal structure, NMR and IR-spectroscopic properties are discussed.  相似文献   

12.
在电解液中加入 (NaPO3)6并在镁合金表面制备微弧氧化层,研究 (NaPO3)6浓度对镁合金微弧氧化层的影响.结果显示,微弧氧化层中含有MgO,Mg2SiO4,Mg3(PO4)2等物质;随 (NaPO3)6浓度增加,微弧氧化层厚度增加,表面微孔孔径变大,当 (NaPO3)6浓度达到7 g/L时,微弧氧化层截面出现较明显的微裂纹;微弧氧化处理后的镁合金的耐蚀性明显高于基体的.当 (NaPO3)6浓度为5 g/L时其耐蚀性最佳;镁合金基体溶血率为72.3%,在不同浓度 (NaPO3)6下微弧氧化处理的镁合金溶血率均在1%~2.5%之间,溶血作用消除.  相似文献   

13.
The composites of Mg–x wt.% CaNi5 (x = 20, 30 and 50) were prepared by hydriding combustion synthesis (HCS) and the phase evolution during HCS as well as the hydriding properties of the products were investigated. It was found that Mg reacted with CaNi5 forming Mg2Ni and Ca during the heating period of HCS. Afterwards, the resultant Mg2Ni and Ca as well as the remnant Mg reacted with hydrogen during the cooling period. The lower platform in the PC isotherms corresponds to the hydriding of Mg, and the higher one corresponds to Mg2Ni. With the increase of the content of CaNi5 from 20 to 50 wt.%, the hydrogen content of the HCS products increases at first and then decreases. The Mg–30 wt.% CaNi5 composite has the maximum hydrogen capacity of 4.74 wt.%, and it can absorb 3.51 wt.% of hydrogen in the first hydriding process without activation.  相似文献   

14.
In this study, microstructural evolution of Mg–Ni alloy during mechanical alloying(MA) was investigated.Also, a thermodynamic approach was utilized to predict the most stable phases formed in Mg–Ni alloy after MA. The phase composition and microstructural properties of Mg–Ni alloy were assessed by X-ray diffractometry, high-resolution field emission scanning electron microscopy and high-resolution transmission electron microscopy. The results showed that ball milling of magnesium and nickel powder mixture for 70 h yields nanostructural Mg2Ni compound with an average grain size of ~20 nm. Thermodynamic calculations revealed that in the composition ranges of 0.0 \ XMg\ 0.03(at.%)and 0.97 \ XMg\ 1, there is no driving force for amorphous phase formation. In the composition range of 0.07 \ XMg\ 0.93, the change of Gibbs free energy for amorphous phase formation was more negative than solid solution.While for XMg= 0.66(nominal composition of Mg2Ni intermetallic phase), the change of Gibbs free energy for intermetallic phase was found to be more negative than both amorphous and solid solution phases indicating that Mg2Ni intermetallic compound is the most stable phase, in agreement with the experimental observations.  相似文献   

15.
Mg-Zn-Zr series Mg alloys(ZK) are one of the most important commercial Mg alloys due to their good comprehensive mechanical properties. The phase equilibria of the Mg-Zn-Zr system at 400 ℃ covering the overall composition range were investigated by X-ray diffraction and electron probe microanalyses on thirteen ternary alloys. Three ternary compounds, τ_1, τ_2 and τ_3, were detected to be thermodynamically stable at 400 ℃, and their homogeneity range was determined to be Mg_((7-17))Zn_((80-88))Zr_((4-6)), Mg_((15-22))Zn_((66-65))Zr_((9-16)) and Mg_9 Zn_(68)Zr_(23)(in at.%), respectively. Eight three-phase regions and four two-phase regions were observed. The maximum solubility of Mg in Zn_(22) Zr, Zn_(39) Zr_5 and Zn_3 Zr phases was measured to be 0.52, 0.37 and 0.99 at.%, respectively, while the solubility of Zr in MgZn_2 and Mg_2 Zn_3 phases is negligible. The isothermal section of the Mg-Zn-Zr system at 400 ℃ was then constructed based on the present experimental data.  相似文献   

16.
A consistent thermodynamic data set for the Ti–B system is obtained by means of CALPHAD technology. The sublattice model is used to describe the solid solution phases: (Ti%)1(B, Va%)0.5 and (Ti%)1(B, Va%)3 for the terminal solution (Ti) and (βTi), and Ti1(B%, Ti)1 and (B, Ti%)1(B%, Ti)2 for the compound solution TiB and TiB2, respectively. The intermetallic compound Ti3B4 is treated as a stoichiometric compound. The liquid solution phase is assumed to be a substitutional solution with Redlich–Kister formula for the expression of its excess Gibbs energy. The complete Tx phase diagram for the Ti–B binary system is given. The calculation results agree well with experiments.  相似文献   

17.
The in-situ XRD measurements on dehydrogenation/rehydrogenation of the Li–Mg–N–H system were performed in this work. The ballmilled mixture of 8LiH and 3Mg(NH2)2 as a hydrogenated phase gradually changed into Li2NH as a dehydrogenated phase during heat-treatment at 200 °C in vacuum for 50 h. Neither Mg-related phases nor other intermediate phases were recognized in the dehydrogenated phase. With respect to the hydrogenation process, the dehydrogenated state gradually returned to the mixed phase of the LiH and Mg(NH2)2 without appearance of any intermediate phases during heat treatment at 200 °C under 5 MPa H2 for 37 h and during slow cooling down to room temperature through 24 h. In the hydrogenation process at 200 °C under 1 MPa H2, however, the growing up of the LiNH2 and LiH phase was observed in the XRD profiles before the 3Mg(NH2)2 and 8LiH phases were formed as the final hydrogenated state. This indicates that the LiNH2 and LiH phase essentially appears as an intermediate state in the Li–Mg–N–H system composed of 3Mg(NH2)2 and 8LiH.  相似文献   

18.
Nearly dual-phase Mg–Ni alloy fabricated by ingot metallurgy (IM) and comprising 30 vol% Mg2Ni and 61 vol% MgNi2 intermetallic compounds (remaining 9 vol% of unreacted Mg) was mechanically (ball) milled under controlled shearing for 10, 30, 70 and 100 h. The majority of the medium- and small-sized powder particles exhibited a relatively homogeneous microstructure of milled Mg2Ni and MgNi2. A fraction of large-sized particles developed the ‘core and mantel’ microstructure after milling for 70 and 100 h. The ‘core’ contains poorly milled MgNi2 particles and the ‘mantel’ is a thoroughly milled mixture of Mg2Ni, MgNi2 and, possibly, residual Mg. X-ray diffraction provides evidence of nanostructurization and eventual amorphization of a fraction of a heavily ball milled Mg2Ni phase. The remnant Mg2Ni developed a nanocrystalline/submicrocrystalline structure. The co-existing MgNi2 phase developed a submicrocrystalline structure within the powder particles. The results are rationalized in terms of enthalpy effects by the application of Miedema’s semi-empirical model to the phase changes in ball milled intermetallics.  相似文献   

19.
Europium doped phosphors Ca3La3(BO3)5 were first synthesized by a sol–gel process technique. The reaction temperature of the sol–gel process was 300 °C lower than that of the solid-state reaction and the reaction time of the sol–gel process was shorter. The photoluminescence properties of Eu3+ doped Ca3La3(BO3)5 indicated that the phosphors exhibited a strong luminescence of 5D07F2 transition at 612 nm under the excitation at 237 nm. The emission intensity of the phosphors prepared by the sol–gel process was higher than those prepared by the solid-state reaction. The relationship between optical properties and morphologies were studied. In particular, Li+ ion doping effectively enhanced the luminescent properties of the Eu3+ doped Ca3La3(BO3)5 phosphors. The highest brightness was observed in the phosphor Ca3La2.82Eu0.1Li0.08B5O15−δ prepared by the sol–gel process.  相似文献   

20.
The complex formation model was used to investigate the thermodynamic properties of liquid Ca–Mg glassy alloys. Our expressions reproduce the thermodynamic functions such as free energy of mixing, enthalpy of mixing, entropy of mixing and activity ratio. The study of long wavelength concentration–concentration fluctuations (SCC(0)) provides structural information about liquid glass-forming Ca–Mg alloys. Chemical short range order parameter (1) was obtained from SCC(0) to quantify the degree of order. The study reveals that the formation of more than one type of complex may be related to the process of glass formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号