首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
研究了氯化铵对紫色红曲霉M3103次级代谢产物中红曲色素和桔霉素合成代谢的影响及其调控机制。结果表明:在以红米为固态发酵基质的培养基中外加氯化铵能显著提高红曲色素产量,降低桔霉素产量;通过高效液相色谱-紫外可见光全波长扫描分析红曲色素组成,发现添加氯化铵显著提高了红曲黄色素和橙色素的产量;通过实时荧光定量PCR检测,红曲色素合成关键基因mppC、mppD、mppE、MpFasA2和MpPKS5的表达量与空白组相比均显著上调,而桔霉素合成关键基因ctnA和PksCT的表达量与空白组相比均显著下调。固态发酵中添加适量的氯化铵可影响紫色红曲霉M3103对营养物质吸收和代谢,有利于促进红曲色素尤其是黄色素的生物合成,抑制桔霉素的合成。  相似文献   

2.
在前期分离纯化出的10株红曲霉基础上,以18种液体培养基对10株红曲霉进行发酵培养,通过分光光度计和质谱分析仪测 定各发酵液中红曲色素和桔霉素含量,分析不同地区红曲霉的红曲色素和桔霉素的代谢特性,筛选出高产红曲色素低产桔霉素的 红曲霉菌株。 结果表明,产红曲色素最适的液体培养基配方为葡萄糖3%、蛋白胨1%,其中新疆地区红曲霉所产红曲色素量最高,为 6.81×10-2 mg/mL;新疆地区红曲霉仅在18种培养基中的面筋碱性蛋白酶水解液+葡萄糖发酵液中产生了桔霉素,而红曲霉ZBX天津 在所有培养基发酵液中均未产生桔霉素。  相似文献   

3.
红曲菌在发酵过程中产生多种次级代谢产物,其中红曲色素作为一种使用历史悠久的天然色素,广泛应用于食品、医药、化妆品等行业领域中。但伴随着红曲色素的合成,会产生具有肾毒性的真菌毒素——桔霉素,使红曲色素的应用受到限制。为找到最佳培养基成分及培养条件,提高红曲色素产量的同时,降低桔霉素含量,以色素色价、菌体干重、桔霉素含量为考察指标进行筛选。结果表明,红曲菌高产橙黄色素、低产桔霉素的最佳发酵条件为:可溶性淀粉60 g/L,氮源为10 g/L(NH4)2SO4,2 g/L K2HPO4,2. 0 g/L MgSO4,0. 02 g/L Zn SO4;装液量50 m L/250 m L,初始p H 3,转速200 r/min,在28℃下培养5 d。在此工艺条件下,橙、黄色素分别比之前提高了6倍和4倍,桔霉素含量降低了30%。  相似文献   

4.
红曲色素作为天然色素已广泛应用于食品行业,而桔霉素污染会对其食品安全性造成严重影响,也对其出口造成很大障碍。该文总结了红曲色素发酵生产过程中桔霉素控制相关研究进展,包括无桔霉素或低桔霉素的菌种选育,培养基优化,发酵过程参数控制等手段来控制或消除桔霉素,以期为有效减少桔霉素生成,提高红曲色素产品的安全性提供参考和借鉴。  相似文献   

5.
对红曲霉产红曲色素的液体发酵培养基组成和发酵条件进行了研究.结果表明红曲霉发酵产红曲色素的最佳培养基组成为:葡萄糖30 g/L,硝酸钠15 g/L,硫酸锌0.05 g/L和硫酸锰0.05 g/L,培养基初始pH=3,装液量为30 mL/250 mL,培养时间为120 h.在此条件下,红曲霉发酵产红曲色素的色价达到16.91 U/mL.  相似文献   

6.
通过液态培养,研究4种不同培养基(麦芽汁培养基、PDA培养基、蔗糖-酵母浸膏培养基及大米培养基)对紫色红曲霉YY-1菌体生长、红曲色素及桔霉素产生规律的影响。结果显示,YY-1在蔗糖-酵母浸膏培养基中菌体长势最好,发酵至20 d时达到最大生物量,为0.027 g/mL,而利用麦芽汁培养基培养生成的菌丝体最少;色素及桔霉素产生能力最强的是大米培养基,培养至第8天时,3种色素产量达到最大值,红色素、橙色素及黄色素色价分别为5833.05、4493.84、4423.27 U/g,培养至第4天时,桔霉素达到最高峰,其含量为159.755 mg/kg,在蔗糖-酵母浸膏培养基色素及桔霉素产生能力最弱;比较不同培养基产生的色素种类发现,大米培养基有利于红色素的产生,而麦芽汁培养基则利于产生橙色素和黄色素。  相似文献   

7.
采用传统微生物分离手段从浓香型大曲内分离出一株产橘色色素的红曲霉菌株M。通过18S rDNA的PCR扩增及测序分析,结果表明该菌属于红曲霉属。利用高效液相色谱技术检测该红曲霉在不同培养基、是否添加EDTA等条件下桔霉素产量的变化。结果表明该菌在酵母浸膏蔗糖(YES)培养基中桔霉素的产量远高于谷氨酸葡萄糖(MSG)培养基和麦芽汁培养基,达到81.412mg/L;不同发酵时间内的桔霉素产量呈现先升高后降低的变化趋势,且添加微量的EDTA(4×10-5g/L)就能显著影响桔霉素的产生。  相似文献   

8.
选取高产桔霉素红曲菌L及低产桔霉素红曲菌Idu,采用液态培养方式,研究不同种类碳氮源对这2种菌株产色素及桔霉素的影响。结果表明:对高产桔霉素菌株L而言,大米粉作为碳源其色素产量可达到72.02U/mL,桔霉素产量最低,为1.74mg/L,色素产量较高同时桔霉素产量得到很好控制,因此为菌株L的碳源最优选择;谷氨酸钠作为氮源其色素产量可达63.96 U/mL,桔霉素产量为8.13mg/L,色素产量最高同时桔霉素含量在可控范围之内,因此作为最优氮源的选择。对低产桔霉素菌株Idu而言,除蔗糖外,其余碳源对桔霉素产量均低于1mg/L,因此选择产色能力最高的麦芽糖作为碳源,色素产量可达56.94U/mL;桔霉素的产量随着菌种产色能力的增加而增加,因此选取产桔霉素最少的硫酸铵作为氮源以避免发酵产品桔霉素的超标。  相似文献   

9.
低桔霉素红曲色素液态发酵工艺的研究   总被引:1,自引:0,他引:1  
研究了碳源、氮源和Mg2+对高产色素低桔霉素红曲霉M onascus sp.sjs-3产色素和桔霉素的影响,确定了液态发酵最优培养基为玉米淀粉50g/L,大豆3g/L,ZnSO·47H2O0.5g/L,CaCl20.1g/L,K2H PO45g/L,K H2PO45g/L,M nSO4·H2O0.3g/L,FeSO·47H2O0.01g/L,发酵192h时,菌体色素产量达到最高,胞内的红色价为173U/mL,未检出桔霉素。  相似文献   

10.
以色价和桔霉素为指标,通过正交实验对红曲霉AS3.531固态发酵产红曲色素的发酵条件进行了优化研究。结果表明:装料量60g/250mL、温度37℃、pH 5.5、培养基初始含水量70%时色价达到最高;装料量40g/250mL、温度37℃、pH 5.0、培养基初始含水量60%时,桔霉素的生物合成量最低,综合考虑高色价和低桔霉素,最优发酵条件为装料量50g/250mL、温度37℃、pH 5.0、培养基初始含水量70%,此条件下色价为256U/g,桔霉素含量为0.0805μg/g。  相似文献   

11.
筛选到一株高产色素、低产桔霉素的红曲霉菌9903,并鉴定该菌种为红曲红曲菌。为提高色素含量、降低桔霉素含量,对该菌的发酵培养基成分进行了研究,通过三因素三水平正交实验得到了摇瓶最佳培养基配方,在10L的自动发酵罐实验中,以玉米淀粉和谷氨酸单钠盐为主要成分的发酵液色价达到184U/mL,桔霉素质量浓度低于1mg/L,发酵动力学的初步研究表明,色素及桔霉素的生产与菌体生长有一定的偶联关系,而且桔霉素在发酵后期有一定程度的降解。此外,溶氧条件对红曲霉产色素和桔霉素的影响的初步研究表明,高溶氧对色素和桔霉素的生产都有促进作用。  相似文献   

12.
红曲液态发酵高产色素低产桔霉素的工艺条件   总被引:2,自引:0,他引:2  
通过优化液态发酵过程及提取精制过程中的相应措施,可有效降低红曲桔霉素含量。优化后的小型发酵罐主要工艺条件是:精选氮源(大豆水解液为佳);合理的通风量和搅拌转速[小型罐通风强度1.0L/(L·min),转速200r/min];在较高的温度下发酵(36℃);尽可能缩短发酵时间(96h);成熟发酵液在过滤前调节pH,使色素沉淀,从而与桔霉素分离。所得到红曲红色价分别为2 000U/g、10 000 U/g,桔霉素含量分别为0.282 mg/kg和1.373 mg/kg(折算为500U/g时的桔霉素含量为0.075mg/kg和0.067mg/kg),均低于红曲色素日本标准中桔霉素含量的限量指标(0.2 mg/kg即500 U/g)。说明通过发酵工艺及提取精制的优化,在不影响色素高产的情况下可将红曲色素中的桔霉素含量降至理想的水平。  相似文献   

13.
研究紫色红曲霉(Monascus purpureus)Y20液态发酵过程中不同铵盐对目的产物红曲色素及有害物质桔霉素的合成代谢的影响。在发酵培养基中添加不同铵盐,检测M. purpureus Y20发酵液中红曲红色素、红曲黄色素及桔霉素含量,分析其变化及原因。结果表明:M. purpureus Y20发酵过程中发酵液pH值相对较稳定,未添加铵盐的对照组发酵液基本维持在pH 4.8;添加CH3COONH4、NH4H2PO4、C6H5O7(NH4)3的发酵液pH>6;添加NH4NO3、(NH4)2SO4、NH4Cl的发酵液初始pH<5.5,发酵过程中持续降低至pH 2.5左右;含有0.3 mol/L NH4+的(NH4)2SO4的发酵液中桔霉素含量降为0.05 mg/L,较对照组降低88.6%;含有0.1~0.3 mol/L NH4+的NH4Cl发酵液中桔霉素含量降为0.05 mg/L;含有0.3 mol/L NH4+的NH4NO3发酵液未检出桔霉素,红曲黄色素含量较对照组升高31.0%、红曲红色素含量降低11.6%;添加CH3COONH4、NH4H2PO4、C6H5O7(NH4)3的发酵液无桔霉素检出,但菌体干质量较小,色价较低。因此,添加铵盐可影响发酵液pH值,影响M. purpureus Y20对营养物质吸收和代谢,改变红曲色素的组成比例和抑制桔霉素的生成;添加适量(NH4)2SO4、NH4Cl、NH4NO3有利于促进红曲黄色素的生物合成,阻碍桔霉素的生成。  相似文献   

14.
目的:以黑木耳为发酵原料,筛选高产色素、高产洛伐他汀和低产桔霉素的红曲霉菌株,用于红曲木耳产品开发。方法:考察四株红曲霉菌株(M.z507、M.c507、M.b2019、M.h2019)固态发酵产物(多糖、还原糖、蛋白质、洛伐他汀、桔霉素、红曲色素)的含量以及红曲色素的抗氧化活性。结果:发酵14 d后,相对于对照组,四种红曲霉菌中多糖、蛋白质含量均有所减少,还原糖含量均增加。M.h2019红曲总色素色价达50.90 U/mL,洛伐他汀含量达1724.19 μg/g,桔霉素含量为0.03 μg/g,红曲色素抗氧化活性最强;而M.b2019红曲总色素色价为10.52 U/mL,洛伐他汀含量达684.56 μg/g,不产桔霉素;M.z507红曲总色素色价为3.88 U/mL,洛伐他汀含量达102.49 μg/g,不产桔霉素;M.c507红曲总色素色价为2.71 U/mL,既不产洛伐他汀也不产桔霉素。结论:M.h2019菌株产生红曲色素和洛伐他汀产量较高,红曲色素抗氧化活性强,且产生桔霉素含量低于国标限量,适合用于固态发酵木耳红曲产品。  相似文献   

15.
目的对红曲霉中真菌毒素桔霉素进行定量分析,并研究桔霉素合成相关基因簇,为从基因水平上对桔霉素的产生进行调控、提高红曲霉相关食品的安全性提供理论依据。方法采用高效液相色谱(HPLC)法对3株红曲霉(紫色红曲霉YY-1、M2,丛毛红曲霉FJ-1)在液态发酵过程中产生的桔霉素开展定量分析,采用二代测序技术鉴定桔霉素合成基因簇的序列特征,应用实时定量聚合酶链式反应(RT-PCR)法进行相关基因表达水平分析。结果在固态培养和液态发酵过程中,3株红曲霉菌体生长情况无明显差异;在液态发酵过程中,HPLC结果显示M2桔霉素产量最高,其次为YY-1,FJ-1产量最少;M2、YY-1、FJ-1桔霉素合成基因簇相似度达99.9%;膜转运蛋白基因(orf5)、聚酮合酶基因(pksCT)、氧化还原酶基因(ctnB)、转录调节蛋白基因(ctnA)、脱氢酶基因(orf1、ctnE)六个基因表达水平在M2中最高,在FJ-1中最低。结论桔霉素的产量差异与桔霉素合成基因簇所表达酶的种类无关,而与其基因表达的调控相关。  相似文献   

16.
为了实现高色价低橘霉素红曲米的工程化生产,通过单因素试验和正交试验讨论了培养基pH值、培养时间、培养基装量、培养温度、接种量和养花温度对红曲米色价和橘霉素含量的影响,然后进行了3 T发酵罐制种试验、中试生产试验和工程化生产试验。结果表明,最佳培养基pH值为6.5、培养时间为8 d、培养基装量为500 g/浅盘、培养温度为32 ℃、接种量为9%、养花温度为40 ℃。3 T发酵罐制种试验结果表明,在发酵30 h左右,菌丝丰富,含量达到30 g/L以上,种子液黏稠、呈深红色,pH 5.0~5.5。在中试生产试验和工程化生产试验中,红曲米的产率都达到了40%以上,色价均在5 000 U/g左右,橘霉素含量都≤42 μg/kg。  相似文献   

17.
为提高农产品废渣利用价值,通过安卡红曲霉(Monascus anka)As 3.4811液态发酵豆渣、麦麸和梨渣制备膳食纤维。采用扫描电镜、X-衍射光谱、红外光谱、紫外-可见光谱及高效液相色谱(HPLC)等,对安卡红曲霉As 3.4811发酵豆渣、麦麸和梨渣膳食纤维进行结构表征、特性分析及橘霉素含量检测。结果表明,安卡红曲霉As 3.4811发酵后,豆渣、麦麸和梨渣不溶性膳食纤维的基质被破坏,使其内部结构暴露出来,纤维结晶度降低;豆渣、麦麸和梨渣膳食纤维分子内氢键断裂,寡糖含量增加;豆渣和梨渣中的红曲色素主要有橙色素,而麦麸中的红曲色素主要含有黄色素;红曲霉种子液、豆渣、麦麸和梨渣发酵液中橘霉素含量分别为9.8 μg/L、9.4 μg/L、8.8 μg/L和9.0 μg/L。因此,安卡红曲霉As 3.4811液态发酵可以改善豆渣、麦麸和梨渣膳食纤维结构及其特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号