共查询到17条相似文献,搜索用时 78 毫秒
1.
针对煤矿视频监控图像存在噪声强度高且对比度低等问题,提出了一种新型煤矿视频监控图像滤波算法。该算法首先采用自适应Canny算子对图像进行边缘检测,实现边缘图像和非边缘图像的有效分离;然后对边缘图像引入直方图均衡化算法进行处理,以突出图像边缘信息,提高图像对比度;从滤波器的构建、结构元素的设计方面对经典数学形态学滤波算法进行改进,将其应用于非边缘图像的滤波;最后对处理后的边缘图像和非边缘图像引入图像融合机制进行加权融合。实验结果表明,与小波阈值法、经典数学形态学滤波算法相比,该算法具有较好的滤波效果。 相似文献
2.
首先对伪中值滤波算法进行了改进:噪声检测过程融入像素点灰度值、几何距离等因素,实现噪声点从图像像素点中的逐步分离;采用加权滤波的方法滤除噪声。其次对改进非局部均值滤波算法的先验信息获取方法进行了改进:对噪声图像进行提升小波变换,采用一种新型阈值函数选择低频分解系数,对高于阈值的系数进行重构得到参考图像,计算参考图像的相似度权值并将其作为改进非局部均值滤波算法的先验信息。最后基于2种改进算法提出了一种红外图像滤波方法,即依次采用改进伪中值滤波算法和基于先验信息的改进非局部均值滤波算法对红外图像进行滤波处理,然后将其与参考图像进行融合,以修正被过度滤波的图像。实验结果表明,该方法针对高密度噪声的红外图像有较好的滤波效果。 相似文献
3.
4.
双边非局部均值滤波图像去噪算法 总被引:1,自引:0,他引:1
为提高图像去噪的视觉效果,本文根据自然图像通常包含较多的重复性结构这一现象,以及双边滤波器的在图像去噪中所具有的优点,提出了一种新的基于双边滤波与非局部均值( NLM)的图像去噪算法。利用NLM思想对当前的像素灰度值进行估计。过程中,不仅考虑到了当前像素的灰度值对预测结果的影响,而且考虑到了当前像素的位置与周围像素位置之间的关系,构建了非局部邻域内的位置系数来对预测结果进行约束,最后考虑到非局部邻域内同质像素的相似性,设计了双边NLM滤波器。实验结果表明:本文算法比双边滤波算法运行时间快了0.114 s、峰值信噪比( PSNR)提高了0.9、图像相似度( MSSIM)提高了0.181,图像保真度( VIF)提高了0.2147。本文提出的方法能够更好地保留图片信息的完整性,提高了图像的亮度和图像纹理的清晰度。 相似文献
5.
在非局部均值滤波(NLMF)的基础上,通过预生成相似集与2DPCA(two-dimensional principle component analysis)对NLMF进行改进,提出一种新的SAR(synthetic aperture radar)图像降噪方法。在NLMF算法框架下,针对SAR图像噪声的特点,首先经预处理选择邻近的子图像生成相似集,然后通过2DPCA提取子图像的主要特征,此过程减小了斑点噪声对相似性度量的影响,最后在降维后子图像的基础上进行相似性度量。通过仿真SAR图像和真实SAR图像的降噪实验,将本文方法与经典Lee滤波、Kuan滤波、Gamma-Map滤波和NLMF滤波相比较,结果表明,该方法无论在边缘保持还是一致区域的平滑上,都能取得较好的效果,是一种有效的SAR图像降噪算法。 相似文献
6.
齐德明 《计算机应用与软件》2021,38(9):256-261,279
常规非局部均值算法易受噪声对图像的自相似度计算精度的影响,去噪结果对原始图像的边缘细节信息损伤较多.采用改进的Facet算子提取图像的边缘特征,根据图像内部像素分布情况,在不同的区域采用不同的自相似度计算方法,设置一种变尺寸的搜索窗口,最大限度地搜寻相似性邻域,降低噪声对自相似度计算精度的影响,有效保持图像边缘信息.数... 相似文献
7.
均值滤波算法是图像去噪的经典方法,它不仅能够快速减弱噪声对图像的干扰程度,而且可以有效地平滑图像。但普通均值滤波算法容易使图像边缘变得模糊,并且随着窗口的增大,模糊程度更加明显。本文将以处理高斯噪声为例,在原算法的基础上,进一步考虑了每个像素点在八个不同方向的邻域灰度值以不同的速度发生着变化,使算法得到增强,并对改进后的算法进行了相关分析。 相似文献
8.
针对非局部均值滤波算法中难以找到一个全局最优的滤波参数h的问题,给出一种新的该参数的优化方法,并将其应用于传统非局部均值滤波算法的改进。首先基于SUSAN算法提取噪声图像的边缘信息,然后在大量实验的基础上,利用线性回归和非线性回归分析方法建立h与边缘信息、噪声方差之间的优化模型。最后,将基于该优化模型的非局部均值算法应用于多幅图像的去噪处理中。实验结果表明,新算法改善了传统非局部均值算法的去噪性能,取得了良好的滤波效果。 相似文献
9.
10.
针对非局部均值(NL-Means)图像去噪算法有大量结构残留的问题,提出一种带结构检测的NL-Means滤波算法。首先使用一个结构分析器对噪声图像进行预处理,突出图像中的细节信息,然后利用边缘检测的结果调节NL-Means算法相似性度量,为了保留图像的边缘内容让具有相似边缘内容的像素能够获得更大的权,而边缘内容不相似邻域有较小的权(或为零)。实验结果表明:该算法提高了NL-Means算法的去噪能力,滤波后的图像结构相似度更高,改善了图像的视觉质量。 相似文献
11.
目的 超声图像斑点噪声会影响诊断的准确性和可靠性。通过分析超声图像斑点噪声统计模型,结合非局部均值滤波算法,提出一种基于超声斑点噪声模型的改进权值非局部均值(NLM)滤波算法。方法 算法针对超声图像灰度信息对图像进行预处理,利用超声图像斑点噪声模型改进传统NLM算法的权值计算函数,基于图像特征确定最优采样间隔进行下采样,利用改进后的权值计算函数对图像进行NLM去噪处理。结果 分别采用人工合成与真实超声图像对本文算法性能进行测试,并与传统非局部均值滤波算法、非局部总变分(NLTV)等算法进行去噪效果比较,同时采用均方误差、峰值信噪比和平均结构相似性作为滤波算法性能的客观评价指标。本文算法能快速完成超声图像的去噪处理,峰值信噪比较其他算法可以提高0.2 dB以上,可以降低均方误差,提高平均结构相似性,缩短处理时间,并得到较好的图像质量和视觉效果。结论 根据超声图像斑点噪声模型对NLM算法的权值计算函数进行优化,使得NLM图像滤波算法能更好地适用于超声图像的去噪,基于超声斑点噪声模型的改进权值NLM算法相较于其他算法,滤波效果更佳,适合超声图像去噪。 相似文献
12.
针对传统非局部均值算法中权值分配不合理以及邻域之间相似性判断不准确的问题,利用新余弦函数与高斯核函数结合对核函数进行改进;引入邻域相似函数对图像邻域灰度矩阵间的相似性进行度量,使得算法中权值的分配问题得到明显改善。通过PSNR与直方图实验结果表明,在不同的噪声影响下,改进的非局部均值算法在去噪性能上有显著提升。 相似文献
13.
14.
为了提高智能电表芯片图像的字符识别精度,需要消除芯片图像中的噪声,以减小干扰;文章提出了一种基于二维变分模态分解算法(2D-VMD)与非局部均值(NLM)滤波的芯片图像去噪算法;首先利用2D-VMD将含有噪声信号的芯片图像分解为K个模态分量;然后根据提出的结构相似(SSIM)阈值设置方法确定噪声分量并将其去除,使用剩余的有效分量重构图像;最后通过非局部均值滤波算法对重构后的图像进行处理,进一步滤除残余噪声,达到二次去噪的效果;实验结果表明,相比传统的图像去噪算法,提出的算法能在较好保留原始芯片图像的字符信息的基础上,去除不相关的噪声干扰,使去噪后的芯片图像的均方误差值变小,峰值信噪比增大,提高芯片图像质量. 相似文献
15.
16.
目的 针对传统Retinex算法存在的泛灰、光晕、边界突出以及高曝光区域细节增强不明显的现象,将Retinex和多聚焦融合的思想融合在一起,提出一种基于Retinex的改进双边滤波的多聚焦融合算法。方法 首先根据图像情况在像素级层次将反射图像分解为最优亮暗区域两部分,然后利用线性积分变换和邻近像素最优推荐算法,将原始图像与最优亮区域多聚焦融合得到图像T,再将图像T与最优暗区域重复以上步骤得到图像S,最后利用引导滤波进行边界修复得到最终图像。结果 选择两组图像girl和boat进行实验,与SSR(single scale Retinex)、BSSR(Retinex algorithm based on bilateral filtering)、BIFT(Retinex image enhancement algorithm based on image fusion technology)和RVRG(Retinex variational model based on relative gradient regularization and its application)4种方法进行对比,本文方法在方差和信息熵两方面表现出明显优势。在均值方面,比BIFT和RVRG分别平均提高16.37和20.90;在方差方面,比BIFT和RVRG分别平均提高1.25和4.42;在信息熵方面,比BIFT和RVRG分别平均提高0.1和0.17;在平均梯度方面,比BIFT和RVRG分别平均提高1.21和0.42。对比BIFT和RVRG的实验数据,证明了本文方法的有效性。结论 实验结果表明,相比较其他图像增强算法,本文算法能更有效抑制图像的泛灰、光晕和边界突出现象,图像细节增强效果特别显著。 相似文献
17.
针对超声波医学图像的斑点噪声滤除问题,提出一种保留细节的迭代非局部均值滤波方法。在非局部均值滤波基础上使用迭代操作,重新定义邻域相似块搜索范围的形式,使每个像素点的邻域相似块搜索范围随着迭代过程逐步增大,每一轮迭代的相似块搜索数量保持不变;引入一种边缘检测算子,对每轮迭代滤波前和滤波后的图像进行融合。实验结果表明,所提方法有更好的噪声滤除及细节保留效果,算法计算复杂度更低。 相似文献