首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
小型家用垂直轴风力发电系统的设计   总被引:3,自引:0,他引:3  
本文介绍了一种小型家用垂直轴风力发电系统的设计方案。该系统针对传统萨窝纽斯形(Savonius)风机叶片的形状进行优化——扭曲叶片,对各项动力学参数进行模拟实验及计算。结果表明,这种扭曲叶片型的Savonius风力机与汽车发动机相结合可以使风能利用效率得到更好的开发。  相似文献   

2.
与Savonius风轮组合使用是解决直线翼垂直轴风力机启动性不佳的主要手段。Savonius风轮与直线翼垂直轴风力机直径的比值(简称直径比),是影响组合型垂直轴风力机性能的重要因素。为了研究直径比对组合型垂直轴风力机气动特性的影响,对直径比分别为0.25,0.33,0.5的组合型风力机以及直线翼垂直轴风力机进行仿真计算。计算基于二维定常不可压缩流体的方程,采用标准模型,计算风速为12 m/s。计算包括直线翼垂直轴风力机及3种直径比的组合型风力机的动态输出力矩,同时,对动态输出力矩最优的组合型风力机与直线翼垂直轴风力机的静态启动力矩进行计算与分析。结果表明,组合型垂直轴风力机的最佳直径比为0.5,此时组合型风力机的最大风能利用系数相对于直线翼垂直轴风力机提高了7.1%,平均启动力矩提高了约2倍。  相似文献   

3.
H型垂直轴风力机启动性能分析   总被引:3,自引:0,他引:3  
以H型垂直轴风力机为研究对象,从最基本的启动特性入手,采用三维CFD技术,结合剪切应力输运SST κ-ω湍流模型,模拟分析了全尺寸垂直轴风力机的安装半径、叶片弦长、安装角度和叶片数目四个参数对其自启动性能的影响。结果表明,上游叶片和塔筒的尾流对下游叶片气动特性具有影响,当叶片处于上游尾流区内时,牵引力急剧减小,当气流从两叶片之间穿过时,风力机启动力矩可达到最大值;风轮的静态启动力矩随叶片安装半径的增加而增加,即叶片安装半径越大,自启动性能越好;当叶片弦长从0.1 m增至0.4 m时,启动力矩增长较快,当叶片弦长大于0.4 m时,力矩随叶片弦长增加的幅度明显减小;不同的叶片安装角度对垂直轴风力机启动性能的影响较小,当安装角从1°增至8°时启动力矩也随之缓慢增加,当安装角达到9°时启动力矩迅速减小;叶片数目越多,风轮的最大启动力矩越大,自启动性能越好。  相似文献   

4.
为研究全向导叶作用下不同实度对垂直轴风力机气动性能的影响,通过改变叶片数及弦长调整实度并分析其对全向导叶垂直轴风力机气动性能的作用。结果表明:全向导叶使垂直轴风力机周围流体提速效果显著,最大风能利用率和力矩系数较原始垂直轴风力机分别提高41.6%和25%;随实度增大时,全向导叶垂直轴风力机最佳尖速比降低;改变弦长时,风能利用率峰值随弦长增大呈现先增后减的趋势,且在小尖速比工况下,高实度全向导叶垂直轴风力机力矩系数较高,最大可达0.192;改变叶片数时,风能利用率峰值随叶片数增多而降低,且大尖速比下的低实度全向导叶垂直轴风力机力矩系数较大,但不同实度的全向导叶垂直轴风力机最大力矩系数相差较小。  相似文献   

5.
在传统的Savonius型风力机的基础上,提出了一种具有自适应功能的柔性叶片垂直轴风力机,该风力机在达到一定风速时,会通过减小叶片的迎风面积减小受力,当风速降低时,又可以增大叶片迎风面积,获取更多风能,同时该风力机具有阻力型风力机的优点——启动力矩大,在低风速下便可启动。文章对该风力机进行简化,运用计算流体动力学对风力机进行三维数值计算,分析不同翅叶夹角在不同尖速比下风力机的转矩特性,从而得到最佳夹角,并分别对不同夹角工况下的压力场进行分析。结果表明,在翅叶夹角为15°时,风轮的转矩特性最好。  相似文献   

6.
为获得相对平稳且非负的启动力矩,针对三叶片Savonius风力机开展研究。首先对比研究两叶片和三叶片Savonius风力机的启动性能和输出功率特性。在此基础上,针对其主要的结构参数重叠比开展研究。针对三叶片的结构特点,提出重叠比和净重叠比的定义方式,设置9组不同净重叠比,范围在0~0.36(重叠比范围0.14~0.50)之间。利用数值模拟和风洞试验相结合的方法,研究在不同风速下重叠比对Savonius风力机启动力矩以及输出功率性能的影响。结果表明:净重叠比可消除反向启动力矩,并提升三叶片Savonius风力机的启动性能,平均启动力矩系数最高提升147.06%。净重叠比在0.06~0.11范围内时,对风力机的输出功率有提高作用。  相似文献   

7.
Savonius风力机叶片重叠比的风洞实验研究   总被引:1,自引:0,他引:1  
为了探明其最佳重叠比,首先对具有3种典型重叠比(OL=0,02和0.5)的Savonius风力机进行了风洞实验,确认了OL=0.2的风力机具有较佳的性能.之后将OL设定在0.15~0.30之间,以0.025为间隔细分为7个模式,每一模式中又分为带有中心转轴和无转轴两种类型,分别进行了详细的风洞实验,对叶片重叠比以及转轴轴径对Savonius风力机的静态起动特性和动态功率输出特性的影响进行了研究.  相似文献   

8.
合理开发利用风能是缓解当前化石能源危机的一个重要途径,为了提高风机的风能利用率,并为垂直轴风力机优化设计提供方法,提出了一种针对垂直轴风力发电机气动性能提升的结构改进方案,即将2台H型垂直轴风力发电机设置为反向旋转,并在上游区域设置一块挡流板。通过研究挡流板的设置参数对2台垂直轴风力发电机获取能量的影响,发现能量获取受到挡流板宽度影响最大,并且其风能利用效率随挡流板宽度增加呈现出先增后减的趋势,而随着两台垂直轴风力发电机轴之间的距离与风轮直径比l/d增加,风机可获得的最大风能利用率逐渐下降。选择合适导流板参数下的最大风能利用率为0.45,与没有挡流板时相比提升了36%。  相似文献   

9.
直线翼垂直轴风力机气动效率普遍较低,为此提出一种具有内侧、外侧、双侧格尼襟翼和凹槽格尼襟翼的翼型叶片以提升其气动性能。通过数值模拟研究6种新型叶片对垂直轴风力机风能利用率、力矩系数、流场结构和叶片切向力等气动性能的影响。结果表明:6种格尼襟翼叶片均可在一定尖速比(TSR)范围内提高风能利用率,外侧凹槽格尼襟翼最大风能利用率可提高17.92%;外侧格尼襟翼与双侧凹槽格尼襟翼相比原始叶片可有效降低风力机载荷波动并提高平均力矩系数;双侧dimple-GF可改善动态失速特性,明显抑制旋涡发展;单叶片切向力在上游区明显增大,有效提高了风力机气动性能。  相似文献   

10.
为改善H型垂直轴风力机(VAWT)的气动特性,文章研究了6种翼型型线改变后的翼型对H型VAWT气动特性的影响,并进行了数值模拟计算和风洞试验。风洞试验验证了模拟计算的结果,证明了型线改变后的风力机对提高气动性有积极的作用。试验结果表明:1波浪型风机和Dimple型风机均可在一定叶尖速比(λ)范围内提高风力机的风能利用率,其中1波浪型风力机在低λ下最高可提高风能利用率13.76%,其单叶片切向力在下游区明显增大;Dimple型风力机在高λ下最高可提高风能利用率14.6%,其单叶片切向力在上游区明显增大。两种改型后的翼型均可改善流动分离,并提高VAWT的气动性能。  相似文献   

11.
Woody biomass in Finland and Sweden comprises mainly four wood species: spruce, pine, birch and aspen. To study the ash, which may cause problems for the combustion device, one tree of each species were cut down and prepared for comparisons with fuel samples. Well-defined samples of wood, bark and foliage were analyzed on 11 ash-forming elements: Si, Al, Fe, Ca, Mg, Mn, Na, K, P, S and Cl. The ash content in the wood tissues (0.2–0.7%) was low compared to the ash content in the bark tissues (1.9–6.4%) and the foliage (2.4–7.7%). The woods’ content of ash-forming elements was consequently low; the highest contents were of Ca (410–1340 ppm) and K (200–1310), followed by Mg (70–290), Mn (15–240) and P (0–350). Present in the wood was also Si (50–190), S (50–200) and Cl (30–110). The bark tissues showed much higher element contents; Ca (4800–19,100 ppm) and K (1600–6400) were the dominating elements, followed by Mg (210–2400), P (210–1200), Mn (110–1100) and S (310–750), but the Cl contents (40–330) were only moderately higher in the bark than in the wood. The young foliage (shoots and deciduous leaves) had the highest K (7100–25,000 ppm), P (1600–5300) and S (1100–2600) contents of all tissues, while the shoots of spruce had the highest Cl contents (820–1360) and its needles the highest Si content (5000–11,300). This paper presented a new approach in fuel characterization: the method excludes the presence of impurities, and focus on different categories of plant tissues. This made it possible to discuss the contents of ash element in a wide spectrum of fuel-types, which are of large importance for the energy production in Finland and Sweden.  相似文献   

12.
13.
正1 ABSTRACT To reduce the effect of global warming on our climate,the levels of CO2emissions should be reduced.One way to do this is to increase the efficiency of electricity production from fossil fuels.This will in turn reduce the amount of CO2emissions for a given power output.Using US practice for efficiency calculations,then a move from a typical US plant running at 37%efficiency to a 760℃/38.5 MPa(1 400/5 580 psi)plant running at 48%efficiency would reduce CO2emissions by 170kg/MW.hr or 25%.  相似文献   

14.
Performance assessment of some ice TES systems   总被引:1,自引:0,他引:1  
In this paper, a performance assessment of four main types of ice storage techniques for space cooling purposes, namely ice slurry systems, ice-on-coil systems (both internal and external melt), and encapsulated ice systems is conducted. A detailed analysis, coupled with a case study based on the literature data, follows. The ice making techniques are compared on the basis of energy and exergy performance criteria including charging, discharging and storage efficiencies, which make up the ice storage and retrieval process. Losses due to heat leakage and irreversibilities from entropy generation are included. A vapor-compression refrigeration cycle with R134a as the working fluid provides the cooling load, while the analysis is performed in both a full storage and partial storage process, with comparisons between these two. In the case of full storage, the energy efficiencies associated with the charging and discharging processes are well over 98% in all cases, while the exergy efficiencies ranged from 46% to 76% for the charging cycle and 18% to 24% for the discharging cycle. For the partial storage systems, all energy and exergy efficiencies were slightly less than that for full storage, due to the increasing effect wall heat leakage has on the decreased storage volume and load. The results show that energy analyses alone do not provide much useful insight into system behavior, since the vast majority of losses in all processes are a result of entropy generation which results from system irreversibilities.  相似文献   

15.
The purpose of this paper is to illustrate the advantages of the direct surface-curvature distribution blade-design method, originally proposed by Korakianitis, for the leading-edge design of turbine blades, and by extension for other types of airfoil shapes. The leading edge shape is critical in the blade design process, and it is quite difficult to completely control with inverse, semi-inverse or other direct-design methods. The blade-design method is briefly reviewed, and then the effort is concentrated on smoothly blending the leading edge shape (circle or ellipse, etc.) with the main part of the blade surface, in a manner that avoids leading-edge flow-disturbance and flow-separation regions. Specifically in the leading edge region we return to the second-order (parabolic) construction line coupled with a revised smoothing equation between the leading-edge shape and the main part of the blade. The Hodson–Dominy blade has been used as an example to show the ability of this blade-design method to remove leading-edge separation bubbles in gas turbine blades and other airfoil shapes that have very sharp changes in curvature near the leading edge. An additional gas turbine blade example has been used to illustrate the ability of this method to design leading edge shapes that avoid leading-edge separation bubbles at off-design conditions. This gas turbine blade example has inlet flow angle 0°, outlet flow angle −64.3°, and tangential lift coefficient 1.045, in a region of parameters where the leading edge shape is critical for the overall blade performance. Computed results at incidences of −10°,   −5°,   +5°,   +10° are used to illustrate the complete removal of leading edge flow-disturbance regions, thus minimizing the possibility of leading-edge separation bubbles, while concurrently minimizing the stagnation pressure drop from inlet to outlet. These results using two difficult example cases of leading edge geometries illustrate the superiority and utility of this blade-design method when compared with other direct or inverse blade-design methods.  相似文献   

16.
Chlamydomonas reinhardtii cc124 and Azotobacter chroococcum bacteria were co-cultured with a series of volume ratios and under a variety of light densities to determine the optimal culture conditions and to investigate the mechanism by which co-cultivation improves H2 yield. The results demonstrated that the optimal culture conditions for the highest H2 production of the combined system were a 1:40 vol ratio of bacterial cultures to algal cultures under 200 μE m?2 s?1. Under these conditions, the maximal H2 yield was 255 μmol mg?1 Chl, which was approximately 15.9-fold of the control. The reasons for the improvement in H2 yield included decreased O2 content, enhanced algal growth, and increased H2ase activity and starch content of the combined system.  相似文献   

17.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

18.
Karaha–Telaga Bodas is a partially vapor-dominated, fracture-controlled geothermal system located adjacent to Galunggung Volcano in western Java, Indonesia. The geothermal system consists of: (1) a caprock, ranging from several hundred to 1600 m in thickness, and characterized by a steep, conductive temperature gradient and low permeability; (2) an underlying vapor-dominated zone that extends below sea level; and (3) a deep liquid-dominated zone with measured temperatures up to 353 °C. Heat is provided by a tabular granodiorite stock encountered at about 3 km depth. A structural analysis of the geothermal system shows that the effective base of the reservoir is controlled either by the boundary between brittle and ductile deformational regimes or by the closure and collapse of fractures within volcanic rocks located above the brittle/ductile transition. The base of the caprock is determined by the distribution of initially low-permeability lithologies above the reservoir; the extent of pervasive clay alteration that has significantly reduced primary rock permeabilities; the distribution of secondary minerals deposited by descending waters; and, locally, by a downward change from a strike-slip to an extensional stress regime. Fluid-producing zones are controlled by both matrix and fracture permeabilities. High matrix permeabilities are associated with lacustrine, pyroclastic, and epiclastic deposits. Productive fractures are those showing the greatest tendency to slip and dilate under the present-day stress conditions. Although the reservoir appears to be in pressure communication across its length, fluid, and gas chemistries vary laterally, suggesting the presence of isolated convection cells.  相似文献   

19.
A chemical reactor for the steam-gasification of carbonaceous particles (e.g. coal, coke) is considered for using concentrated solar radiation as the energy source of high-temperature process heat. A two-phase reactor model that couples radiative, convective, and conductive heat transfer to the chemical kinetics is applied to optimize the reactor geometrical configuration and operational parameters (feedstock's initial particle size, feeding rates, and solar power input) for maximum reaction extent and solar-to-chemical energy conversion efficiency of a 5 kW prototype reactor and its scale-up to 300 kW. For the 300 kW reactor, complete reaction extent is predicted for an initial feedstock particle size up to 35 μm at residence times of less than 10 s and peak temperatures of 1818 K, yielding high-quality syngas with a calorific content that has been solar-upgraded by 19% over that of the petcoke gasified.  相似文献   

20.
The physical aspects of the activation energy, in higher and high temperatures, of the metal creep process were examined. The research results of creep-rupture in a uniaxial stress state and the criterion of creep-rupture in biaxial stress states, at two temperatures, are then presented. For these studies creep-rupture, taking case iron as an example the energy and pseudoenergy activation was determined. For complex stress states the criterion of creep-rupture was taken to be Sdobyrev's, i.e. σred = σ1 β + (1 − β)σi, where: σ1-maximal principal stress, σi-stress intensity, β-material constant (at variable temperature β = β(T)). The methods of assessment of the material ageing grade are given in percentages of ageing of new material in the following mechanical properties: 1) creep strength in uniaxial stress state, 2) activation energy in uniaxial stress state, 3) criterion creep strength in complex stress states, 4) activation pseudoenergy in complex stress states. The methods 1) and 3) are the relatively simplest because they result from experimental investigations only at nominal temperature of the structure work, however, for methods 2) and 4) it is necessary to perform the experimental investigations at least at two temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号