首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
It has previously been reported that in resting T-lymphocytes the protein tyrosine kinase p59 constitutively co-precipitates with four phosphoproteins of 43, 55, 85, and 120 kDa, respectively. We have recently cloned the 55-kDa protein that was termed Src kinase-associated phosphoprotein of 55 kDa (SKAP55). Here we demonstrate that the recently characterized SH2-domain-containing leukocyte protein 76-associated phosphoprotein of 130 kDa (SLAP-130) is one of the components of the Fyn complex and that it also co-precipitates with SKAP55 in human T-cells. We establish that SKAP55 and SLAP-130 associate with each other when both molecules are co-expressed in COS cells. By co-transfection of truncated mutants of SKAP55 and SLAP-130 as well as by using the two-hybrid selection system, we further demonstrate that the association between SLAP-130 and SKAP55 is direct and involves the Src homology 3 domain of SKAP55 and the proline-rich sequence of SLAP-130.  相似文献   

2.
Two T cell-specific src-family tyrosine kinases, p56 lck (lck) and p59 fyn (fyn), are implicated in regulating PI 3-kinase activity in response to interleukin-2 (IL-2), a cytokine that induces T cell proliferation. The src- homology domains 3 (SH3) of src-family kinases can directly interact with the PI 3-kinase regulatory subunit p85 and this may be a mechanism to regulate PI 3-kinase activity. In order to understand the mode of PI 3-kinase activation by the IL-2 receptor, we examined the association of PI 3-kinase to SH2 and SH3 domains of lck and fyn in IL-2-dependent kit 225 cells. The fyn SH3 domain bound more PI 3-kinase and its p85 subunit than the lck SH3 domain, while the lck SH2 domain bound more PI 3-kinase than the fyn SH2 domain. None of these interactions were regulated by IL-2. Low binding of PI 3-kinase to the lck SH3 domain was not observed in IL-2-independent Jurkat T cells. Thus, SH3 and SH2 domains of lck and fyn bound different amounts of PI 3-kinase, a feature that was dependent on a T cell type, but was not influenced by IL-2.  相似文献   

3.
Recently c-Cbl has been reported to be phosphorylated upon CSF-1 stimulation. The product of the c-cbl proto-oncogene (c-Cbl) is a 120 kDa protein harboring several docking sites for Src homology 2 (SH2) domain containing proteins and proline-rich regions that have been shown to allow its constitutive association with the SH3 domains of Grb2. We demonstrate here that CSF-1 exposure of stable transfectant CHO cells expressing the CSF-1 receptor induced the sustained tyrosine phosphorylation of c-Cbl and its subsequent association with Crk-II and the p85 kDa subunit of the PI 3-kinase, while it constitutively associates with Grb2. We demonstrate by in vitro experiments that these associations require the SH2 domain of Crk-II and both the C- and N-terminal SH2 domains of the p85 subunit of the PI 3-kinase. cCbl is the major PI 3-kinase-containing protein in c-Fms expressing CHO cells upon CSF-1 stimulation. Thus c-Cbl behaves as a core protein, allowing the formation of a quaternary complex including, Crk-II, PI 3-kinase and Grb2. We provide evidence that this multiprotein complex can interact with the tyrosine phosphorylated CSF-1 receptor through the unoccupied SH2 domain of Grb2.  相似文献   

4.
RA70, which is expressed during neuronal differentiation of P19 EC, is highly homologous to human src kinase-associated phosphoprotein (SKAP55). Here we isolated human full-length RA70 cDNA. Unlike SKAP55, which is specifically expressed in thymus and T cells, RA70 was expressed ubiquitously in various tissues including lung, skeletal muscle, and spleen, and in various cell lines including human monocytic leukemia (U937) cells, but RA70 was undetectable in thymus and T cell lymphoma (Jurkat) cells. RA70 as well as SKAP55 proved to be a protein with molecular weight 55 kDa associated with SH2 domain of Fyn. Interaction between RA70 and src family kinases, Fyn, Hck and Lyn, was detected during monocytes/macrophage-differentiation of U937 cells. Thus, like SKAP55, RA70 is an adaptor protein of the src family kinases. RA70 may play an essential role in the src signaling pathway in various cells.  相似文献   

5.
To identify novel proteins capable of associating with the Raf-1 serine/threonine kinase, we investigated whether Raf-1 could interact with the Src homology 2 (SH2) domains of various signal-transducing molecules. In this report, we demonstrate that Raf-1 associated with the SH2 domain of Fyn (a member of the Src tyrosine kinase family) but not with the SH2 domains of phospholipase C-gamma 1, the p85 alpha subunit of phosphatidylinositol 3-kinase, and SH2-containing protein tyrosine phosphatase 2. Unlike most SH2 domain interactions that require tyrosine-phosphorylated residues, the Raf-1/Fyn SH2 domain association was dependent on the serine phosphorylation of Raf-1. Our results also demonstrate that Raf-1 interacted with the SH2 domain of Src and that this interaction was destabilized by mutation of Arg175 found within the conserved SH2 domain FLVRES sequence. In addition, we show that inclusion of additional Src sequences containing the SH3 domain increased the association of Raf-1 with the Src SH2 domain. Finally, using the baculovirus/Sf9 cell system, we show that coexpression of Raf-1 with full-length Fyn/Src resulted in the coimmunoprecipitation of Raf-1 with Fyn/Src, the tyrosine phosphorylation of Raf-1, and the stimulation of Raf-1 kinase activity. These results suggest that Raf-1 may form a functional complex with Fyn/Src mediated in part by SH2 domains and the serine phosphorylation of Raf-1.  相似文献   

6.
Protein tyrosine kinase p59fyn is associated with the TCR-CD3 complex and is suggested to play a role in T cell activation. To determine the molecular mechanism of p59fyn-mediated signal transduction in T cell activation, we established murine T cell hybridoma lines that expressed an elevated amount of wild-type or mutant fyns. Clones that expressed high levels of normal p59fyn and active p59fyn, encoded by wild-type and f-14 mutant fyn respectively, showed enhanced IL-2 production upon stimulation by anti-CD3 antibodies or natural antigen. On the other hand, clones that expressed kinase negative p59fyn and p59fyn with an SH2 (Src-homology 2) deletion encoded by t-1 mutant fyn showed little induction of IL-2 production upon stimulation. These data suggest that p59fyn is important in T cell signaling and that the SH2 sequence plays a critical role in the reaction. Induction of tyrosine phosphorylation of multiple proteins upon antigenic stimulation was augmented similarly in the cells that respectively expressed wild-type and f-14 mutant fyns at elevated levels. The proteins that became highly tyrosine-phosphorylated included phospholipase C (PLC-gamma 1), p95vav, ZAP-70, the MAP kinase, CD3 zeta and unidentified proteins of 120, 100 and 80 kDa. Tyrosine phosphorylation of the 120, 95 and 68 kDa proteins associated with PLC-gamma 1 was also observed in these cells upon stimulation. In contrast, only the 100 kDa protein and the MAP kinase were increasingly tyrosine phosphorylated in the antigen-stimulated cells expressing t-1 fyn. These data suggest that PLC-gamma 1, PLC-gamma 1 associated molecules, p95vav, the 80 kDa protein, ZAP-70 and the CD3 zeta chain may be substrates of p59fyn or of other tyrosine kinases regulated by p59fyn and be important in T cell signaling.  相似文献   

7.
Purified amino-terminal Src homology 2 (SH2) domains of GAP, PLCgamma1 and the p85alpha subunit of PI 3-kinase, as well as the carboxy-terminal SH2 domain of the latter protein and the unique SH2 domain of Grb2, were injected into full grown, stage VI Xenopus laevis oocytes. None of the injected domains showed any effect when injected alone, nor did they affect the rate of GVBD induced by progesterone, an adenylate cyclase-dependent process. On the other hand, the unique Grb2 SH2 domain and all N-terminal SH2 domains injected inhibited to various degrees the rate of insulin-induced GVBD, a tyrosine kinase dependent pathway. Interestingly, and in contrast to the behavior shown by the N-terminal domain of the same molecule, the C-terminal SH2 domain of p85 did not inhibit, but slightly accelerated the rate of GVBD induced by insulin. Furthermore, whereas the Grb SH2 domain and all N-terminal SH2 domains tested failed to co-operate with normal Ras protein to induce GVBD, the C-terminal SH2 domain of p85alpha exhibited significant synergy when coinjected with normal Ras protein, indicating that the C- and N-terminal SH2 domains of p85alpha exert opposite (positive and negative, respectively) regulatory roles in the control of oocyte insulin/Ras signaling pathways. Our results demonstrate that the purified, isolated SH2 domains retain structural and functional specificity and that Xenopus oocytes constitute an useful biological system to analyse their functional role in tyrosine kinase signaling pathways.  相似文献   

8.
9.
Mammalian phosphatidylinositol 3-kinase (PI 3-kinase) plays an important role in the regulation of various cellular, receptor tyrosine kinase-mediated processes, such as mitogenesis and transformation. PI 3-kinase is composed of a 110-kDa catalytic subunit and a regulatory subunit of 85 kDa or 55 kDa. We have cloned a gene for a regulatory subunit from Drosophila melanogaster, named droPIK57, from head-specific cDNA libraries. The droPIK57 gene encodes a protein containing two SH2 domains with significant sequence homology to those in p85 and p55. Like the p55 subunits, DroPIK57 is missing the SH3 domain and the bcr homology region of the p85 subunit. The short N-terminus as well as the C-terminus of the DroPIK57 protein show no identity to the known PI 3-kinase subunits, suggesting that it is a new member in the family of regulatory subunits. In-situ hybridization and Northern blot analysis indicate a widespread function of this gene during embryogenesis and in the CNS.  相似文献   

10.
Tyrosine autophosphorylation of the v-Fms oncogene product results in the formation of high affinity binding sites for cellular proteins with Src homology 2 (SH2) domains that are involved in various signal cascades. Tryptic digestion of the autophosphorylated v-Fms and of its cellular counterpart, the feline c-Fms polypeptide, gave rise to at least six common major phosphopeptides, four of which have been characterized previously. Employing site-directed mutagenesis and phosphopeptide mapping of in vitro phosphorylated glutathione S-transferase v-Fms fusion proteins as well as full-length v-Fms molecules expressed in various cells, we show here that Tyr543 of the juxtamembrane domain and Tyr696 of the kinase insert domain constitute major autophosphorylation sites. Recombinant fusion proteins containing the tyrosine-phosphorylated kinase insert domain bind the growth factor receptor bound protein 2 and the p85 and p110 subunits of phosphatidylinositol 3'-kinase. In contrast, fusion proteins containing the juxtamembrane domain phosphorylated on Tyr543 fail to bind any of the known SH2 domain-containing cellular proteins but associate specifically with an as yet undefined 55-kDa cellular protein that by itself is phosphorylated on tyrosine.  相似文献   

11.
CD28 provides a costimulatory signal that results in optimal activation of T cells. The signal transduction pathways necessary for CD28-mediated costimulation are presently unknown. Engagement of CD28 leads to its tyrosine phosphorylation and subsequent binding to Src homology 2 (SH2)-containing proteins including the p85 subunit of phosphatidylinositol 3'-kinase (PI3K); however, the contribution of PI3K to CD28-dependent costimulation remains controversial. Here we show that CD28 is capable of binding the Src homology 3 (SH3) domains of several proteins, including Grb2. The interaction between Grb2 and CD28 is mediated by the binding of Grb2-SH3 domains to the C-terminal diproline motif present in the cytoplasmic domain of CD28. While the affinity of the C-terminal SH3 domain of Grb2 for CD28 is greater than that of the N-terminal SH3 domain, optimal binding requires both SH3 domains. Ligation of CD28, but not tyrosine-phosphorylation, is required for the SH3-mediated binding of Grb2 to CD28. We propose a model whereby the association of Grb2 with CD28 occurs via an inducible SH3-mediated interaction and leads to the recruitment of tyrosine-phosphorylated proteins such as p52(shc) bound to the SH2 domain of Grb2. The inducible interaction of Grb2 to the C-terminal region of CD28 may form the basis for PI3K-independent signaling through CD28.  相似文献   

12.
The actin filament-associated protein AFAP-110 forms a stable complex with activated variants of Src in chick embryo fibroblast cells. Stable complex formation requires the integrity of the Src SH2 and SH3 domains. In addition, AFAP-110 encodes two adjacent SH3 binding motifs and six candidate SH2 binding motifs. These data indicate that both SH2 and SH3 domains may work cooperatively to facilitate Src/AFAP-110 stable complex formation. As a test for this hypothesis, we sought to understand whether one or both SH3 binding motifs in AFAP-110 modulate interactions with the Src SH3 domain and if this interaction was required to present AFAP-110 for tyrosine phosphorylation by, and stable complex formation with, Src. A proline to alanine site-directed mutation in the amino terminal SH3 binding motif (SH3bm I) was sufficient to abrogate absorption of AFAP-110 with GST-SH3STC. Co-expression of activated Src (pp60(527F)) with AFAP-110 in Cos-1 cells permit tyrosine phosphorylation of AFAP-110 and stable complex formation with pp60(527F). However, co-expression of the SH3 null-binding mutant (AFAP71A) with pp60(527F) revealed a 2.7 fold decrease in steady-state levels of tyrosine phosphorylation, compared to AFAP-110. Although a lower but detectable level of AFAP71A was phosphorylated on tyrosine, AFAP71A could not be detected in stable complex with pp60(527F), unlike AFAP-110. These data indicate that SH3 interactions facilitate presentation of AFAP-110 for tyrosine phosphorylation and are also required for stable complex formation with pp60(527F).  相似文献   

13.
The Shc adaptor protein, hereafter referred to as ShcA, possesses two distinct phosphotyrosine-recognition modules, a C-terminal Src homology 2 (SH2) domain and an N-terminal phosphotyrosine-binding (PTB) domain, and is itself phosphorylated on tyrosine in response to many extracellular signals. Phosphorylation of human ShcA at Tyr-317 within its central (CH1) region induces binding to the Grb2 SH2 domain and is thereby implicated in activation of the Ras pathway. Two shc-related genes (shcB and shcC) have been identified in the mouse. shcB is closely related to human SCK, while shcC has not yet been found in other organisms. The ShcC protein is predicted to have a C-terminal SH2 domain, a CH1 region with a putative Grb2-binding site, and an N-terminal PTB domain. The ShcC and ShcB SH2 domains bind phosphotyrosine-containing peptides and receptors with a specificity related to, but distinct from, that of the ShcA SH2 domain. The ShcC PTB domain specifically associates in vitro with the autophosphorylated receptors for nerve growth factor and epidermal growth factor. These results indicate that ShcC has functional SH2 and PTB; domains. In contrast to shcA, which is widely expressed, shcC RNA and proteins are predominantly expressed in the adult brain. These results suggest that ShcC may mediate signaling from tyrosine kinases in the nervous system, such as receptors for neurotrophins.  相似文献   

14.
To identify serum-inducible genes in the insulin-producing cell line beta TC-1, a library subtraction screening procedure was performed on serum-deprived (G0) and serum-restimulated (G1) insulin-producing beta TC-1 cells. A cDNA containing a motif with strong homology to Src homology 2 (SH2) domains was found using this procedure and called Shb. The Shb cDNA contains two methionine codons in its N-terminus and thus may code for two proteins of 67 and 56 kDa, each with one SH2 domain in its C-terminus. No other structural similarity to proteins with catalytic activity could be detected, suggesting that Shb is a so called adaptor. Shb contains the proline-rich sequence PPPGPGR between the two proposed initiator methionines which resembles a sequence for binding to Src homology 3 (SH3) domains. A second proline-rich sequence was detected after the second methionine codon. The Shb cDNA hybridized to a similar or identical mRNA of 3.1 kb expressed in mouse brain, liver, kidney, heart, NIH3T3 fibroblasts and beta TC-1 cells. Western blot analysis of the same tissues using an antiserum directed against a synthetic peptide corresponding to a part of the SH2 domain of Shb, revealed reactivity with two proteins of 56 and 67 kDa. In addition, a third reactive component of 40 kDa was detected in most tissues. Transfection and transient expression of the Shb cDNA in COS-1 cells yielded increased expression of the 67, 56 and 40 kDa proteins. Transfection and stable expression of the Shb cDNA in pig aortic endothelial cells showed increased expression primarily of the 67 kDa protein. A fusion protein consisting of the SH2 domain of Shb linked to glutathione S-transferase showed increased binding to glycoproteins of cells stimulated with platelet-derived growth factor (PDGF-BB). Furthermore, the autophosphorylated PDGF beta-receptor but not the autophosphorylated epidermal growth factor (EGF) receptor bound specifically to immobilized fusion protein. It is concluded that Shb is a novel SH2-containing protein with proline-rich domains and therefore probably involved in the signal-transduction of some ligand-activated tyrosine kinase receptors.  相似文献   

15.
Interleukin (IL)-2, a major growth and differentiation factor for T lymphocytes, was found to induce tyrosine phosphorylation of the proto-oncogene products p120-Cbl and CrkL in IL-2-dependent cell lines. We established that, in unstimulated lymphocytes, the Src homology 2 (SH2) and SH3 domain-containing protein Grb2 and the p85 subunit of phosphatidylinositol 3-kinase, associate constitutively with Cbl via their SH3 domains. Furthermore, IL-2 stimulation increased the level of interaction of phosphorylated Cbl with the p85 SH2 domains, and we provide evidence that the preformed Cbl-Grb2 complex recruits the phosphorylated p52 Shc adaptor protein. In addition, we demonstrate that the SH2-SH3-SH3 adaptor protein CrkL is tyrosine-phosphorylated in an IL-2-dependent manner and, via its SH2 domain, associates with a large proportion of phosphorylated Cbl. We also show that p85 is preassociated with the CrkL SH3 domain. Furthermore, the association of CrkL and p85 is increased after IL-2 treatment by a mechanism involving intermediary tyrosine-phosphorylated proteins that remain to be identified. Our results show that CrkL associates independently with Cbl or p85 and suggest that it also participates in larger complexes containing Cbl and p85. Although the precise roles of Cbl and CrkL remain to be elucidated, their tyrosine phosphorylation, in addition to the multiple protein interactions described here, strongly suggest that Cbl and CrkL may play pivotal roles in the early steps of IL-2 signal transduction.  相似文献   

16.
Tyrosine phosphorylation of cellular proteins is an early and an essential step in T cell receptor-mediated lymphocyte activation. Tyrosine phosphorylation of transmembrane receptor chains (such as zeta and CD3 chains) and membrane-associated proteins provides docking sites for SH2 domains of adaptor proteins and signaling enzymes, resulting in their recruitment in the vicinity of activated receptors. pp36/38 is a prominent substrate of early tyrosine phosphorylation upon stimulation through the T cell receptor. The tyrosine-phosphorylated form of pp36/38 is membrane-associated and directly interacts with phospholipase C-gamma 1 and Grb2, providing one mechanism to recruit downstream effectors to the cell membrane. Here, we demonstrate that in Jurkat T cells, pp36/38 associates with the p85 subunit of phosphatidylinositol 3-kinase (PI-3-K p85) in an activation-dependent manner. Association of pp36/38 with PI-3-K p85 was confirmed by transfection of a hemagglutinin-tagged p85 alpha cDNA into Jurkat cells followed by anti-hemagglutinin immunoprecipitation. In vitro binding experiments with glutathione S-transferase fusion proteins of PI-3-K p85 demonstrated that the SH2 domains, but not the SH3 domain, mediated binding to pp36/38. This binding was selectively abrogated by phosphopeptides that bind to p85 SH2 domains with high affinity. Filter binding assays demonstrated that association between pp36/38 and PI-3-K p85 SH2 domains was due to direct binding. These results strongly suggest the role of pp36/38 in recruiting PI-3-K to the cell membrane and further support the idea that pp36/38 is a multifunctional docking protein for SH2 domain-containing signaling proteins in T cells.  相似文献   

17.
Shb is a recently described Src homology 2 (SH2) domain-containing adaptor protein. Here we show that Shb is expressed in lymphoid tissues, and is recruited into signaling complexes upon activation of Jurkat T cells. Grb2 binds proline-rich motifs in Shb via its SH3 domains. As a result, a number of proteins detected in anti-Shb and anti-Grb2 immunoprecipitates are shared, including phosphoproteins of 22, 36/38, 55/57 and 70 kDa. Shb-association with p22, which represents the T cell receptor associated zeta chain, occurs through the Shb SH2 domain. The central region of Shb binds p36/38. Since this interaction was inhibited by phosphotyrosine, this region of Shb is likely to contain a non-SH2 PTB (phosphotyrosine binding) domain. The Shb PTB domain was found to preferentially bind the sequence Asp-Asp-X-pTyr when incubated with a phosphopeptide library. A peptide corresponding to a phosphorylation site in 34 kDa Lnk inhibited association between Shb and p36/38. Overexpression of Shb in Jurkat cells led to increased basal phosphorylation of Shb-associated p36/38 and p70 proteins. Inactivation of the Shb SH2 domain by an R522K mutation resulted in a reduced stimulation of tyrosine phosphorylation of several proteins in response to CD3 crosslinking when expressed in Jurkat cells. Together, our results show three distinct domains of Shb all participate in the formulation of multimeric signaling complexes in activated T cells. These results indicate that the Shb protein functions in T cell receptor signaling.  相似文献   

18.
BACKGROUND: Human immunodeficiency virus (HIV) Nef protein accelerates virulent progression of acquired immunodeficiency syndrome (AIDS) by its interaction with specific cellular proteins involved in signal transduction and host cell activation. Nef has been shown to bind specifically to a subset of the Src family of kinases. The structures of free Nef and Nef bound to Src homology region 3 (SH3) domain are important for the elucidation of how the affinity and specificity for the Src kinase family SH3 domains are achieved, and also for the development of potential drugs and vaccines against AIDS. RESULTS: We have determined the crystal structures of the conserved core of HIV-1 Nef protein alone and in complex with the wild-type SH3 domain of the p59fyn protein tyrosine kinase (Fyn), at 3.0 A resolution. Comparison of the bound and unbound Nef structures revealed that a proline-rich motif (Pro-x-x-Pro), which is implicated in SH3 binding, is partially disordered in the absence of the binding partner; this motif only fully adopts a left-handed polyproline type II helix conformation upon complex formation with the Fyn SH3 domain. In addition, the structures show how an arginine residue (Arg77) of Nef interacts with Asp 100 of the so-called RT loop within the Fyn SH3 domain, and triggers a hydrogen-bond rearrangement which allows the loop to adapt to complement the Nef surface. The Arg96 residue of the Fyn SH3 domain is specifically accommodated in the same hydrophobic pocket of Nef as the isoleucine residue of a previously described Fyn SH3 (Arg96-->lle) mutant that binds to Nef with higher affinity than the wild type. CONCLUSIONS: The three-dimensional structures support evidence that the Nef-Fyn complex forms in vivo and may have a crucial role in the T cell perturbating action of Nef by altering T cell receptor signaling. The structures of bound and unbound Nef reveal that the multivalency of SH3 binding may be achieved by a ligand induced flexibility in the RT loop. The structures suggest possible targets for the design of inhibitors which specifically block Nef-SH3 interactions.  相似文献   

19.
Gab1 is a member of the docking/scaffolding protein family which includes IRS-1, IRS-2, c-Cbl, p130(cas), and p62(dok). These proteins contain a variety of protein-protein interaction motifs including multiple tyrosine residues that when phosphorylated can act as binding sites for Src homology 2 (SH2) domain-containing signaling proteins. We show in the RAMOS human B cell line that Gab1 is tyrosine-phosphorylated in response to B cell antigen receptor (BCR) engagement. Moreover, tyrosine phosphorylation of Gab1 correlated with the binding of several SH2-containing signaling proteins to Gab1 including Shc, Grb2, phosphatidylinositol 3-kinase, and the SHP-2 tyrosine phosphatase. Far Western analysis showed that the SH2 domains of Shc, SHP-2, and the p85 subunit of phosphatidylinositol 3-kinase could bind directly to tyrosine-phosphorylated Gab1 isolated from activated RAMOS cells. In contrast, the Grb2 SH2 domain did not bind directly to Gab1 but instead to the Shc and SHP-2 associated with Gab1. We also show that Gab1 is present in the membrane-enriched particulate fraction of RAMOS cells and that Gab1/signaling protein complexes are found in this fraction after BCR engagement. Thus, tyrosine-phosphorylated Gab1 may recruit cytosolic signaling proteins to cellular membranes where they can act on membrane-bound targets. This may be a critical step in the activation of multiple BCR signaling pathways.  相似文献   

20.
Gap junctions mediate cell-cell communication in almost all tissues and are composed of channel-forming integral membrane proteins, termed connexins [1-3]. Connexin43 (Cx43) is the most widely expressed and the most well-studied member of this family. Cx43-based cell-cell communication is regulated by growth factors and oncogenes [3-5], although the underlying mechanisms are poorly understood as cellular proteins that interact with connexins have yet to be identified. The carboxy-terminal cytosolic domain of Cx43 contains several phosphorylation sites and potential signalling motifs. We have used a yeast two-hybrid protein interaction screen to identify proteins that bind to the carboxy-terminal tail of Cx43 and thereby isolated the zona occludens-1 (ZO-1) protein. ZO-1 is a 220 kDa peripheral membrane protein containing multiple protein interaction domains including three PDZ domains and a Src homology 3 (SH3) domain [6-9]. The interaction of Cx43 with ZO-1 occurred through the extreme carboxyl terminus of Cx43 and the second PDZ domain of ZO-1. Cx43 associated with ZO-1 in Cx43-transfected COS7 cells, as well as endogenously in normal Rat-1 fibroblasts and mink lung epithelial cells. Confocal microscopy revealed that endogenous Cx43 and ZO-1 colocalised at gap junctions. We suggest that ZO-1 serves to recruit signalling proteins into Cx43-based gap junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号