首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
2.
Pilus-mediated adhesion is essential in the pathogenesis of Neisseria meningitidis (MC) and Neisseria gonorrhoeae (GC). Pili are assembled from a protein subunit called pilin. Pilin is a glycoprotein, and pilin antigenic variation has been shown to be responsible for intrastrain variability with respect to the degree of adhesion in both MC and GC. In MC, high-adhesion pilins are responsible for the formation of bundles of pili which bind bacteria and cause them to grow as colonies on infected monolayers. In this work, we selected MC and GC pilin variants responsible for high and low adhesiveness and introduced them into the other species. Our results demonstrated that a given pilin variant expressed an identical phenotype in either GC or MC with respect to bundling and adhesiveness to epithelial cells. However, the production of truncated soluble pilin (S pilin) was consistently more abundant in GC than in MC. In the latter species, the glycosylation of pilin at Ser63 was shown to be required for the production of a truncated monomer of S pilin. In order to determine whether the same was true for GC, we engineered various pilin derivatives with an altered Ser63 glycosylation site. The results of these experiments demonstrated that the production of S pilin in GC was indeed more abundant when pilin was posttranslationally modified at Ser63. However, nonglycosylated variants remained capable of producing large amounts of S pilin. These data demonstrated that for GC, unlike for MC, glycosylation at Ser63 is not required for S-pilin production, suggesting that the mechanisms leading to the production of S pilin in GC and MC are different.  相似文献   

3.
4.
A fatal untreated case of fulminant meningococcemia was examined to investigate the crossing of the blood-brain barrier (BBB) by Neisseria meningitidis. Microscopic examination showed bacteria in vivo adhering to the endothelium of both the choroid plexus and the meninges. Comparison of the isolates cultivated from the blood and the cerebrospinal fluid (CSF) revealed no antigenic variation of the pilin or the class 5 protein, whereas the expression of the PilC protein was greater in the CSF and the choroid plexus than in the blood. This was due to an increased activity of one of the pilC promotors. This higher expression of PilC correlated in vitro with greater adhesiveness to endothelial cells. A mutation in the single pilC locus of this strain abolished in vitro pilus-mediated adhesion to endothelial cells. These data suggest that PilC plays an important role in the crossing of the BBB, likely through pilus-mediated adhesion.  相似文献   

5.
Legionella pneumophila expresses pili of variable lengths, either long (0.8 to 1.5 microm) or short (0.1 to 0.6 microm), that can be observed by transmission electron microscopy. We have identified a gene in L. pneumophila with homology to the type IV pilin genes (pilEL). An insertion mutation was constructed in pilEL and introduced into the L. pneumophila wild-type strain by allelic exchange. The pilin mutant is defective for expression of long pili. Reintroduction of the pilin locus on a cosmid vector restores expression of the long pili. The L. pneumophila pilEL mutant exhibited approximately a 50% decrease in adherence to human epithelial cells (HeLa and WI-26 cells), macrophages (U937 cells), and Acanthamoeba polyphaga but had a wild-type phenotype for intracellular replication within these cells. Southern hybridization analysis showed that the pilEL locus is present in L. pneumophila serogroups 1 through 13 but is variable in 16 other Legionella species. The presence of a type IV pilin gene and its expression by L. pneumophila may provide an advantage for colonization of lung tissues during Legionnaires' disease and invasion of amoebas in the environment.  相似文献   

6.
alpha 1,3-Galactosyl antibodies (anti-Gal) are ubiquitous natural human serum and secretory polyclonal antibodies that bind to terminal galactose-alpha 1,3-galactose (alpha-galactosyl) residues. Serum immunoglobulin G (IgG) anti-Gal can block alternative complement pathway-mediated lysis of representative gram-negative enteric bacteria that bind it to lipopolysaccharide alpha-galactosyl structures, thereby promoting survival of such bacteria in the nonimmune host. We wanted to know whether anti-Gal also could bind to the lipooligosaccharides (LOS) of Neisseria meningitidis. To our surprise, we found that serum and secretory anti-Gal bound to pili but not to LOS of certain strains. This suggested the presence of an immunogenic pilus carbohydrate epitope. Mild periodate oxidation of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated outer membrane preparations from strains that bound anti-Gal followed by labeling of the neoaldehyde groups resulted in the labeling of bands that corresponded to pilin and LOS, confirming that pilin contains carbohydrate structures. A Bandeiraea simplicifolia lectin that also binds terminal alpha 1,3-galactosyl residues also bound to pilin. Serum IgG, IgA, and IgM anti-Gal as well as colostral secretory IgA anti-Gal bound to pilin, as judged by immunoblotting, and to the pili of intact piliated organisms, as judged by immunoelectron microscopy. Total serum anti-Gal (IgG, IgA, and IgM) and purified serum IgA1 anti-Gal, but not its purified IgG isotype, blocked complement-mediated lysis of a piliated meningococcal strain that bound anti-Gal to its pili. Colostral anti-Gal secretory IgA blocked killing of the same strain. Thus, anti-Gal IgA may promote disease when it binds to the pili of N. meningitidis strains.  相似文献   

7.
Transfer of the Escherichia coli fertility plasmid, F, is dependent on expression of F pili. Synthesis of F-pilin subunits is known to involve three F plasmid transfer (tra) region products: traA encodes the 13-kDa precursor protein, TraQ permits this to be processed to the 7-kDa pilin polypeptide, and TraX catalyzes acetylation of the pilin amino terminus. Using cloned tra sequences, we performed a series of pulse-chase experiments to investigate the effect of TraQ and TraX on the fate of the traA product. In TraQ- cells, the traA gene product was found to be very unstable. While traA polypeptides of various sizes were detected early in the chase period, almost all were degraded within 5 min. Rapid traA product degradation was also observed in TraX+ cells, although an increased percentage of these products persisted during the chase. In TraQ+ cells, most of the traA product was processed to the 7-kDa pilin polypeptide within the 1-min pulse period; this product [7(Q)] was not degraded but was increasingly converted to an 8-kDa form [8(Q)] as the chase continued, suggesting that host enzymes can modify the pilin polypeptide. Similar results were observed in TraQ+ TraX+ cells, but the primary 7-kDa product appeared to be N-acetylated pilin (Ac-7). An 8-kDa product (Ac-8) was also detected, but this band did not increase in intensity during the chase. We suggest a pathway in which TraQ prevents the traA product from folding to a readily degradable conformation and assists its entry into the membrane, Leader peptidase I cleaves the traA product signal sequence, and a subset of the pilin polypeptides becomes modified by host enzymes; TraX then acetylates the N terminal of both the modified and unmodified pilin polypeptides.  相似文献   

8.
Shuttle mutagenesis has been adapted to randomly mutate the genome of Neisseria gonorrhoeae (gonococcus; Gc). A size-restricted plasmid library of Gc strain FA1090 was mutated with the mini-transposon mTnEGNS. Radomness was tested by checking for transposon insertion bias between vector and insert DNA, Gc transformation efficiency of individual mutated clones, and representation of unique clones before and after Gc transformation with a mutated pool of DNA. Mutants created by random shuttle mutagenesis were screened, using a colony-based polymerase chain reaction assay, for the ability to undergo pilin antigenic variation. Out of 8,064 mutants screened, 22 unique transposon insertion mutants were found to be antigenic variation deficient (Avd). The Avd mutants were separated into five types according to recombination defect-associated phenotypes, including colony growth, natural DNA transformation competence, and repair of DNA damage caused by ultraviolet radiation.  相似文献   

9.
10.
The paracrystalline surface (S)-layer of Caulobacter crescentus is composed of a single secreted protein (RsaA) that interlocks in a hexagonal pattern to completely envelop the bacterium. Using a genetic approach, we inserted a 12 amino acid peptide from Pseudomonas aeruginosa strain K pilin at numerous semirandom positions in RsaA. We then used an immunological screen to identify those sites that presented the inserted pilin peptide on the C. crescentus cell surface as a part of the S-layer. Eleven such sites (widely separated in the primary sequence) were identified, demonstrating for the first time that S-layers can be readily exploited as carrier proteins to display 'epitope-size' heterologous peptides on bacterial cell surfaces. Whereas intact RsaA molecules carrying a pilin peptide could always be found on the surface of C. crescentus regardless of the particular insertion site, introduction of the pilin peptide at 9 of the 11 sites resulted in some proteolytic cleavage of RsaA. Two types of proteolytic phenomena were observed. The first was characterized by a single cleavage within the pilin peptide insert with both fragments of the S-layer protein remaining anchored to the outer membrane. The other proteolytic phenomenon was characterized by cleavage of the S-layer protein at a point distant from the site of the pilin peptide insertion. This cleavage always occurred at the same location in RsaA regardless of the particular insertion site, yielding a surface-anchored 26 kDa proteolytic fragment bearing the RsaA N-terminus; the C-terminal cleavage product carrying the pilin peptide was released into the growth medium. When the results of this work were combined with the results of a previous study, the RsaA primary sequence could be divided into three regions with respect to the location of a peptide insertion and its effect on S-layer biogenesis: (i) insertions in the extreme N-terminus of RsaA either produce no apparent effect on S-layer biogenesis or disrupt surface-anchoring of the protein; (ii) insertions in the extreme C-terminus either produce no apparent effect on S-layer biogenesis or disrupt protein secretion; and (iii) insertions more centrally located in the protein either have no apparent effect on S-layer biogenesis or result in proteolytic cleavage of RsaA. These data are discussed in relation to our previous assignment of the RsaA N- and C-terminus as regions that are important for surface anchoring and secretion respectively.  相似文献   

11.
The ligase chain reaction (LCR) is an in vitro nucleic acid amplification technique that exponentially amplifies targeted DNA sequences. In a multicenter study, we evaluated the use of a 4-h LCR-based assay for the diagnosis of Neisseria gonorrhoeae infection of the cervix and male urethra. The LCR results were compared with those of culture for N. gonorrhoeae by using selective media. This assay amplifies target sequences within the N. gonorrhoeae opacity gene. Discordant LCR-positive and culture-negative specimens were further evaluated by testing by another LCR assay which used N. gonorrhoeae-specific pilin probe sets. A total of 1,539 female endocervical specimens and 808 male urethral swab specimens were evaluated in the study. An expanded "gold standard" was defined to include all culture-positive as well as culture-negative, confirmed LCR-positive specimens. After resolution of discrepant samples, the sensitivities of the N. gonorrhoeae LCR assays for the female and male specimens were 97.3 and 98.5%, respectively, with specificities of 99.6 and 99.8%, respectively. Resolved culture sensitivities were 83.9 and 96.5% for the female and male specimens, respectively. The LCR assay for gonorrhea is a rapid, highly sensitive nonculture method for detecting gonococcal infection of the cervix and male urethra.  相似文献   

12.
13.
Meningococcemia and disseminated intravascular coagulation (DIC) have a known association, and they have been identified as a rare cause of osteonecrosis in children. To our knowledge, we report only the second case of an adult with DIC and Neisseria meningitidis infection whose condition was subsequently diagnosed as osteonecrosis. We also review the world medical literature that pertains to osteonecrosis as a sequelae of meningococcal infection associated with DIC.  相似文献   

14.
Haemophilus influenzae type b (Hib) organisms produce pili, which mediate attachment to human cells and are multimeric structures composed of a 24-kDa subunit called pilin or HifA. Although pili from other organisms contain additional proteins accessory to pilin, no structural components other than pilin have been identified in Hib pili. Previous analysis of a Hib pilus gene cluster, however, suggested that two genes, hifD and hifE, may encode additional pilus subunits. To determine if hifD and hifE encode pilus components, the genes were overexpressed in Escherichia coli and the resulting proteins were purified and used to raise polyclonal antisera. Antisera raised against C-terminal HifD and HifE fragments reacted with H. influenzae HifD and HifE proteins, respectively, on Western immunoblots. Western immunoblot analysis of immunoprecipitated Hib pili demonstrated that HifD and HifE copurified with pili. In enzyme-linked immunosorbent assays, antisera raised against a recombinant HifE protein that contained most of the mature protein reacted more to piliated Hib than to nonpiliated Hib or to a mutant containing a hifE gene insertion. Immunoelectron microscopy confirmed that the HifE antiserum bound to pili and demonstrated that the antiserum bound predominantly to the pilus tips. These data indicate that HifD and HifE are pilus subunits. Adherence inhibition studies demonstrated that the HifE antiserum completely blocked pilus-mediated hemagglutination, suggesting that HifE mediates pilus adherence.  相似文献   

15.
Type IV pili are required for social gliding motility in Myxococcus xanthus. In this work, the expression of pilin (the pilA gene product) during vegetative growth and fruiting-body development was examined. A polyclonal antibody against the pilA gene product (prepilin) was prepared, along with a pilA-lacZ fusion, and was used to assay expression of pilA in M. xanthus in different mutant backgrounds. pilA expression required the response regulator pilR but was negatively regulated by the putative sensor kinase pilS. pilA expression did not require pilB, pilC, or pilT. pilA was also autoregulated; a mutation which altered an invariant glutamate five residues from the presumed prepilin processing site eliminated this autoregulation, as did a deletion of the pilA gene. Primer extension and S1 nuclease analysis identified a sigma54 promoter upstream of pilA, consistent with the homology of pilR to the NtrC family of response regulators. Expression of pilA was found to be developmentally regulated; however, the timing of this expression pattern was not entirely dependent on pilS or pilR. Finally, pilA expression was induced by high nutrient concentrations, an effect that was also not dependent on pilS or pilR.  相似文献   

16.
Some strains of enterotoxigenic Escherichia coli associated with human diarrhoeal disease produce a class of pili represented by those called CS1. For the assembly of the major-pilin subunit, CooA, into pili, each of four linked genes, cooB, A, C, and D, is required. In this study, we have determined the subcellular localization of CooB, C and D, and investigated the molecular interactions of these proteins using specific antisera. CooD appears to be an integral pilus protein because it co-purifies with, and is strongly associated with, CS1 pili. In keeping with its role as an assembly protein, the CooD minor pilin (when overexpressed in CS1-piliated strains) was detected in periplasmic intermolecular complexes with the major-pilin subunit CooA. CooB is an assembly protein found exclusively in the periplasm of CS1-piliated strains. CooB also forms periplasmic intermolecular complexes with CooA, but does not constitute part of the final pilus structure. Immunoblot analysis of cell fractions showed that CooC is an outer membrane protein of CS1-piliated E. coli. Based on this information, we have proposed a model for CS1-pilus assembly which is very similar to the model for polymerization of the PapA pilin of uropathogenic E. coli. As the assembly proteins of Pap and CS1 pili are structurally unrelated, this may represent a case of convergent evolution.  相似文献   

17.
We have recently proposed a computational model of the N. gonorrhoeae pilus fiber based on the high resolution X-ray crystal structure of the component protein pilin, combined with available biophysical and genetic data [Parge et al. (1995) Nature 378, 32-38]. In parallel, we have used anti-peptide antibodies to distinguish buried and exposed regions of pilin within the assembled fiber [Forest et al. (1996) Infect. Immun. 64, 644-652]. This mini-review addresses the properties of the current pilus model and the locations of end-exposed epitopes. The fiber forms a three-layered structure of coiled conserved alpha helices surrounded by beta-sheet, with the hypervariable region as the most highly exposed portion. Overall the pilus model developed from diffraction and antibody mapping is expected to be representative of type-4 pili with general implications for type-4 assembly, function, and interactions with other proteins and cell membranes.  相似文献   

18.
The interaction of Neisseria gonorrhoeae with human phagocytes is a hallmark of gonococcal infections. Recently, CD66 molecules have been characterized as receptors for Opa52-expressing gonococci on human neutrophils. Here we show that Opa52-expressing gonococci or Escherichia coli or F(ab) fragments directed against CD66, respectively, activate a signalling cascade from CD66 via Src-like protein tyrosine kinases, Rac1 and PAK to Jun-N-terminal kinase. The induced signal is distinct from Fcgamma-receptor-mediated signalling and is specific for Opa52, since piliated Opa- gonococci, commensal Neisseria cinerea or E.coli do not stimulate this signalling pathway. Inhibition of Src-like kinases or Rac1 prevents the uptake of Opa52 bacteria, demonstrating the crucial role of this signalling cascade for the opsonin-independent, Opa52/CD66-mediated phagocytosis of pathogenic Neisseria.  相似文献   

19.
Meningococcal clone ET-15/37, which appeared as a new one in the Czech Republic in 1993, caused an emergency epidemiological and clinical situation in invasive meningococcal disease, characterized by a high fatality rate (20%) compared to the "normal" fatality rate due to "non ET-15/37" strains. Morbidity rate increased since the first year of the new clone occurrence and reached the peak in 1995. This clone has spread all over the country and investigation of the epidemiological markers of Neisseria meningitidis allowed to quickly recognize the emergency situation and subsequently to provide a targeted vaccination with A + C polysaccharide meningococcal vaccine which prevented the spread of the disease caused by Neisseria meningitidis C. The most frequent phenotype of ET-15/37 clone was C:2a:P1.2(P1.5) and its percentage achieved 80% of group C Neisseria meningitidis strains tested. This antigenic shift of Neisseria meningitidis was associated with the age shift in invasive meningococcal disease morbidity: teenagers started to be the most affected age group and later age group of 1-4 olds followed with high morbidity rates. In 1995 B variant of ET-15/37 clone, B:2a:P1.2(P1.5), appeared, causing a high fatality rate, too. Some data are indicative of a possible decrease in the invasive meningococcal disease incidence in the Czech Republic; nevertheless, the active surveillance and detailed investigation of meningococci have to be continued. After four years following the vaccination and chemoprophylaxis strategy recommended in the Guidelines, set up by the National Reference Laboratory for Meningococcal Infections in 1993, it is possible to conclude, that there have been practically no secondary cases of invasive meningococcal disease in the Czech Republic.  相似文献   

20.
Low-affinity penicillin-binding proteins (PBPs), which participate in the beta-lactam resistance of several pathogenic bacteria, have different origins. Natural transformation and recombination events with DNA acquired from neighbouring intrinsically resistant organisms are responsible for the appearance of mosaic genes encoding two or three low-affinity PBPs in highly resistant strains of transformable microorganisms such as Neisseria and Streptococcus pneumoniae. Methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococcal strains possess the mecA determinant gene, which probably evolved within the Staphylococcus genus from a closely related and physiologically functional gene that was modified by point mutations. The expression of mecA is either inducible or constitutive. A stable high-level resistant phenotype requires the synthesis of a normally constituted peptidoglycan. Enterococci have a natural low susceptibility to beta-lactams related to the presence of an intrinsic low-affinity PBP. Highly resistant enterococcal strains overexpress this PBP and/or reduce its affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号