首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Lead-free piezoelectric ceramics KNN modified by Li-substitution and CuO addition have been synthesized, and the piezoelectric and dielectric properties were measured. A morphotropic phase boundary (MPB) between orthorhombic and tetragonal phases was formed with Li-substitution. The co-doping of Li and Cu markedly enhanced the mechanical quality factor (Qm) in comparison with the sole doping of Li and Cu. Anomalous anti-ferroelectric-like hysteresis curves were observed in 2 mol% CuO-doped ceramics. The anti-ferroelectric-like curves were changed to that of normal ferroelectrics following poling. A model based on the formation of the internal bias field (Ei) due to the movements of space charges was proposed to explain these phenomena. It was considered that the Ei stabilized the spontaneous polarization (Pa) and suppressed the domain wall motion to enhance the Qm. The highest Qm obtained in this study was 742. The [(Na0.5K0.5)0.96Li0.04] NbO3 + 0.45 mol% CuO ceramics showed a high Qm value of 414 with a high piezoelectric constant d33 of 100 pC/N.  相似文献   

2.
Effects of Cu doping on the ferroelectric and piezoelectric properties of 0.0038 mol K5.4Cu1.3Ta10O29 modified (K0.5Na0.5)NbO3 ceramics have been investigated. On the basis of analyses on crystal structure and polarization hysteresis, it is suggested that Cu ions reveal amphoteric doping behavior in KNN ceramics. At doping levels up to 1 mol%, the Cu ions substitute pentavalent B-site cations, acting as acceptors that generate O-vacancies to resultantly harden the ceramics. At doping levels above 1.5 mol%, however, Cu ions play a role as donors by replacing monovalent A-site cations. A specimen doped with 0.5 mol% CuO shows an extremely high mechanical quality factor of 3053, which is higher than those of any other reports on KNN-based ceramics.  相似文献   

3.
CuO-doped 0.98K0.5Na0.5NbO3-0.02BiScO3 (0.98KNN-0.02BS-xCu) lead-free piezoelectric ceramics have been fabricated by ordinary sintering technique. The effects of CuO doping on the dielectric, piezoelectric, and ferroelectric properties of the ceramics were mainly investigated. X-ray diffraction reveals that the samples at doping levels of x ≤ 0.01 possess a pure tetragonal perovskite structure. The specimen doped with 1 mol% CuO exhibits enhanced electrical properties (d33 ~ 207 pC/N, kp ~ 0.421, and kt = 0.424) and relatively high mechanical quality factor (Qm = 288). These results indicate that the 0.98KNN-0.02BS-0.01Cu ceramic is a promising candidate for lead-free piezoelectric ceramics for applications such as piezoelectric actuators, harmonic oscillator and so on.  相似文献   

4.
采用传统工艺制备了CuO掺杂的无铅压电陶瓷(Na0.66K0.34)NbO3,研究了CuO掺杂对其压电、介电、铁电等性质的影响。实验结果显示,CuO掺杂促进了晶粒生长,降低了样品的烧结温度,适量掺杂能够显著提高陶瓷样品的密度。当掺杂量为0.5%(摩尔分数)时,样品的密度为4.26g/cm3,品质因子Qm提高到400,介电损耗tanδ降低至0.8%。实验结果还显示,CuO掺杂使得陶瓷变硬,起到硬性添加剂的作用。随着CuO掺杂量的增加,样品的居里点(TC)、正交-四方相变温度(TT-O)、压电常数d33以及机电耦合系数kp均明显降低,而矫顽场显著增加。对于不掺杂的(Na0.66K0.34)NbO3陶瓷,其d33高达107pC/N,该陶瓷优异的压电性能表明,除了具有准同型相界结构的(Na0.5K0.5)NbO3外,(Na0.66K0.34)NbO3也是一种具有研究潜力的无铅压电陶瓷组分。  相似文献   

5.
This paper investigates the effect of K(1.94)Zn(1.06)Ta(5.19)O(15) (KZT) addition on the sintering behavior and piezoelectric properties in lead free piezoelectric ceramics of (K(0.5)Na(0.5))NbO(3) (KNN). The apparent density of sintered KNN ceramics was increased with KZT addition, and a relative density of above 96.3% was obtained with the doping of over 0.5 mol% KZT. The maximum dielectric and piezoelectric properties of epsilon(T)(3)/epsilon(0) = 590, d(33) = 126 pC/N, k(p) = 0.42, and P(r) = 18 microC/cm(2) were obtained from 0.5 mol% KZT-doped KNN ceramics. A small amount of KZT (about 0.5 mol%) was effective for improving the sintering behavior and piezoelectric properties, but KZT addition exceeding 1.0 mol% was effective only for densification. A small amount of KZT was effective for densification of KNN ceramics by promoting K(5.75)Nb(10.8)O(30) liquid phase formation. However, even though KNN with 1.0 to approximately -2.0 mol% KZT had a relative density of >98.5%, the piezoelectric properties were inferior to those of 0.5 mol% KZT-doped KNN, presumably due to the smaller grain size and excess liquid phase of the KNN ceramics doped with higher amounts of KZT. It is believed that a small amount of KZT could be one of the suitable sintering aids to obtain highly dense KNN based piezoelectric.  相似文献   

6.
采用传统陶瓷工艺制备了(K0.5 Na0.5)1-xLixNb1-ySbyO3(KNLNSx-y,x=0~10%(摩尔分数),y=2%~8%(摩尔分数))系无铅压电陶瓷,研究了Li+和Sb5+的取代对KNLNSx-y系材料的相变弥散性的影响.结果表明,在所研究的组成范围内,KNLN-Sx-y,陶瓷都形成了单一的钙钛矿结构,Li+和Sb5+蚪进入了KNN晶格形成固溶体;随着Li含量的增加,KNLNSx-5陶瓷四方-立方相变的弥散性有所减弱;随着Sb含量的增加,KNLNS2-y,陶瓷四方-立方相变的弥散性有所增强.采用修正的居里-外斯定律能够较好的描述KNLNSx-y陶瓷在高于居里温度情况下的介电常数与温度的关系;利用有序-无序理论对该介电弥散现象进行了解释.  相似文献   

7.
CuO-doped lead-free ceramics based on bismuth sodium titanate (Bi0.5Na0.5TiO3, BNT) and barium zirconate titanate (Ba(Zr0.07Ti0.93)O3, BZT) were prepared via a multi-step solid-state reaction process. The BNT–BZT with CuO dopant ceramics sintered at 1150–1180 °C for 2 h in air showed a pure perovskite structure. SEM images reveal that a small amount of CuO (<2 mol%) play a significant role on the microstructure to improve its sintering attributes, while it will degrade when the dopant is added beyond 2 mol%. The dielectric and piezoelectric properties of CuO-doped BNT–BZT ceramics were evaluated. At room temperature, the sample doped with 2 mol% CuO shows quite good properties such as a high piezoelectric constant (d 33 ∼156.5 pC/N) and a high electromechanical coupling factor (k t ∼52%). The depolarization temperature increased dramatically and the maximum permittivity temperature decreased slightly.  相似文献   

8.
The addition of a small amount of CuO to the 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 (0.95NKN-0.05CT) ceramics sintered at 960 °C for 10 h produced a dense microstructure with large grains due to the liquid phase sintering. Due to the negligible Na2O evaporation, poling was easy for all specimens sintered at 960 °C. The piezoelectric properties of the specimens were considerably influenced by the relative density, grain size and liquid phase amount. The high piezoelectric properties of d33 = 200 pC/N, kp = 0.37, and Qm = 350 were obtained for the 0.95NKN-0.05CT ceramics containing 2.0 mol% CuO sintered at 960 °C for 10 h. Therefore, the 0.95NKN-0.05CT ceramics containing a small amount of CuO are a good candidate material for lead-free piezoelectric ceramics.  相似文献   

9.
Lead-free piezoelectric ceramics (1-y)Bi0.5(Na1-xLix)0.5TiO3-yBaTiO3 with x=0-0.125 and y=0.02-0.12 were fabricated by a solid-state reaction process, and their dielectric, piezoelectric and ferroelectric properties were investigated. The results show that the addition of Li+ significantly improves the sintering performance and piezoelectric properties of the ceramics. X-ray diffraction (XRD) patterns indicate that the ceramics possess pure perovskite structure. At room temperature, the ceramics provide hig...  相似文献   

10.
Lead-free (Ba0.7Ca0.3)TiO3-Ba(Zr0.2Ti0.8)O3-xwt %CuO(BCZT-xCu) piezoelectric ceramics have been fabricated by the solid-state reaction process and the effects of CuO addition on the phase structure and piezoelectric properties of the ceramics have been studied. Our results reveal that the addition of CuO significantly improves the sinterability of BCZT ceramics which results in a reduction of sintering temperature from 1,540 to 1,350?°C without sacrificing the high piezoelectric properties. X-ray diffraction (XRD) data shows that CuO diffuses into the lattice of BCZT-xCu ceramics and a pure perovskite phase forms in the ceramic. SEM images indicate that a small amount of CuO addition affects the microstructure, obviously. Main piezoelectric parameters of these ceramics are optimized around x?=?0.04?wt % with a high piezoelectric coefficient (d 33?=?510?pC/N), a planar electromechanical coefficient k p of 45%, a high dielectric constant (ε r ?=?3,762) and a low dissipation factor (tanδ?=?1.05%) at 1?kHz. The results indicate that the BCZT-xCu ceramics are promising lead-free practical applications.  相似文献   

11.
在工业氮气(N2)气氛条件下制备了锂掺杂铌酸钾钠(NKLN)无铅压电陶瓷,研究了Li掺杂量对陶瓷相结构、微观结构及电学性能的影响.结果表明,NKLN陶瓷具有钙钛矿结构,随Li含量的增加,陶瓷在室温下出现了从斜方相到四方相的转变;当Li含量为7%(摩尔分数)时,陶瓷具有优良的电学性能,压电常数(d33)、机电耦合系数(kp)和剩余极化强度(Pr)分别为223pC/N、38.2%和12.11μC/cm2;陶瓷的居里温度Tc随着Li含量的增加而升高,当Li含量为6%(摩尔分数)时为420℃,Li含量为8%(摩尔分数)时为480℃.  相似文献   

12.
Highly dense, 30 μm-thick 0.95(K0.5Na0.5)NbO3-0.05BaTiO3 (KNN-BT) lead-free films were successfully fabricated on alumina substrate by aerosol deposition (AD) and the effect of Mn doping (0 mol%, 0.5 mol% and 1.0 mol%) on the film properties was investigated. It was found that low field dielectric constant decreases by 36% for 0.5 mol% Mn doping and 42% for 1 mol% Mn doping. The loss factor was found to reduce by 19% for 0.5 mol% Mn doping and 43% for 1 mol% Mn doping. Based on the high field polarization-electric field measurement, we demonstrate that Mn induces hardening in KNN-BT thick films. The hardening is believed to be due to the pinning of the domains by dipolar defects at domain boundaries.  相似文献   

13.
锰掺杂对硬性PZT材料压电性能的影响   总被引:25,自引:0,他引:25  
研究了锰掺杂对PZT材料微结构及压电性能的影响,并用ESR确定了锰在PZT材料中的价态.结果表明,锰在PZT材料中主要以 Mn2+和 Mn3+的方式共存.锰在PZT陶瓷材料中的“溶解度”约为1.5mol%.锰含量<0.5mol%时,Mn将以Mn2+和Mn3+的方式优先进入晶格 Pb位,使材料的压电性能提高,表现出施主杂质特性;锰浓度处于 0.5~1.5 mol%时,部分Mn将以Mn3+或Mn2+的方式进入晶格中(Zr;Ti)位,而此浓度范围内锰掺杂的PZT材料同时表现出“软性”和“硬性”材料的压电特性.锰含量>1.5mol%时,过量的Mn将在晶界积聚,使压电活性降低.少量Fe的存在,可使Mn离子的溶解度降低,并起到抑制Mn2+和 Mn3+氧化的作用.  相似文献   

14.
K0.5Na0.5NbO3x ZnO (KNN–xZn) lead-free ceramics have been prepared using the conventional sintering technique and the effects of ZnO addition on the phase structure and piezoelectric properties of the ceramics have been studied. Our results reveal that a small amount of ZnO can improve the density of the ceramics effectively. Because of the high density and ZnO doping effects, the piezoelectric and dielectric properties of the ceramics are improved considerably. The good piezoelectric and dielectric properties of d 33 = 114 pC/N, k p = 0.36, ε r = 395, and Q m = 68 were obtained for the KNN ceramics doped with 1 mol% ZnO. Therefore, the KNN-1.0 mol%Zn ceramics is a good candidate for lead-free piezoelectric application.  相似文献   

15.
PNW-PMS-PZT压电陶瓷准同型相界的压电性能研究   总被引:1,自引:1,他引:0  
采用传统陶瓷工艺制备了PNW—PMS—PZT四元系压电陶瓷,分析了陶瓷样品的相结构组成,结果表明,所有陶瓷样品的相结构为纯钙钛矿相结构;研究了室温下PMS含量,PNW 含量和Zr/Ti的变化对准同型相界的影响规律,实验表明随着PMS、PNW含量和Zr/Ti的增加,材料体系逐渐由四方相向三方相过渡,获得了处于准同型相界附近的材料组成:PMS 的含量在5—6mol%、PNW的含量在2—3mol%、PZT的含量在91—93mol%、Zr/Ti的变化靠近50/50,同时具有高的机电性能.  相似文献   

16.
采用固相合成法制备了(1-x)SrCaBi_4Ti_5O_(18-x)BiMeO_3(SCBT-xBMe,Me=Ga,Mn;0≤x≤0.02)铋层状压电陶瓷,研究了BiMeO_3掺杂对SrCaBi_4Ti_5O_(18)系陶瓷微观结构及电性能的影响。结果表明BiMeO_3掺杂并未改变SCBT陶瓷的晶体结构,所有样品均为单一的铋层状结构陶瓷;适量引入BiMeO_3能促使SCBT的晶粒长大且趋于均匀,并有助于SCBT电性能的优化。当BiMeO_3掺杂量为0.005(Me=Ga)和0.02(Me=Mn)时,材料的压电常数d33分别为18pC/N和20pC/N,同时材料具有高的居里温度(Tc=550℃)和低的介电损耗(tanδ0.15%)。此外,SCBTxBMe材料具有良好的压电稳定性,适合于制备高温高频压电器件。  相似文献   

17.
The effects of Mn addition on the structure, ferroelectric, and piezoelectric properties of the 0.35BiScO3-0.60PbTiO3-0.05Pb(Zn1/3Nb2/3)O3 ceramics were studied. The results demonstrate that the addition of small amounts of Mn did not cause a remarkable change in crystal structure, but resulted in an evident evolution in microstructure and ferro-piezoelctric properties. The addition of Mn can induce combinatory “hard” and “soft” piezoelectric characteristics due to aliovalent substitutions. The optimal electrical properties are obtained in the 0.25 mol% Mn-doped composition with a high Curie temperature, indicating that Mn doping contributes to the electrical properties of the ceramics. It can be expected that the improved piezoelectric material can be a promising candidate for high-temperature piezoelectric applications.  相似文献   

18.
NiO掺杂对PMS-PZ-PT三元系陶瓷微结构和电性能的影响   总被引:1,自引:0,他引:1  
探讨了NiO掺杂量对PMS—PZ—PT三元系陶瓷的微观结构和电性能的影响。实验结果表明:随着掺杂量的增加,物相组成由四方相向三方相转变:NiO在PMS—PZ—PT材料中的固溶度比较小;当掺杂量为0.02wt%时,εr,d33,κp,Qm等都有所提高,从而能获得好的压电性能,能满足超声马达实际使用的要求。  相似文献   

19.
利用固相反应法合成了Ca1-x(KLa)x/2Bi2Nb2O9(x=0~0.20)(xKLaCBNO)铋层状陶瓷,分析不同KLa掺杂量对CaBi2Nb2O9(CBNO)基陶瓷微观结构、介电、压电及电导性能的影响.XRD分析表明KLa的引入未改变CBNO陶瓷的单相结构.SEM和介电系数温度谱结果分别显示,KLa掺杂量的增加,细化尺寸趋于一致,而居里温度(Tc)从943℃降低至875℃,其峰值介电常数减小、峰值介电损耗增大.当掺杂量x=0.1时,样品的高温电阻率较纯CBNO显著升高,压电系数d33由5.2 pC/N提高到15.8 pC/N,居里温度高达870℃,说明A位(KLa)掺杂改性后的CBNO陶瓷在高温传感器等领域具有潜在的应用前景.  相似文献   

20.
0.55Pb(Ni1/3Nb2/3)O3-0.45Pb(Zr0.3Ti0.7)O3(PNN-PZT) ceramics with different concentration of xFe2O3 doping (where x = 0.0, 0.8, 1.2, 1.6 mol%) were synthesized by the conventional solid state sintering technique. X-ray diffraction analysis reveals that all specimens are a pure perovskite phase without pyrochlore phase. The density and grain size of Fe-doped ceramics tend to increase slightly with increasing concentration of Fe2O3. Comparing with the undoped ceramics, the piezoelectric, ferroelectric and dielectric properties of the Fe-doped PNN-PZT specimens are significantly improved. Properties of the piezoelectric constant as high as d33 ~ 956 pC/N, the electromechanical coupling factor kp ~ 0.74, and the dielectric constant εr ~ 6095 are achieved for the specimen with 1.2 mol% Fe2O3 doping sintered at 1200 °C for 2 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号