首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TDE-85/AG-80环氧树脂基复合材料微观形貌与力学性能分析   总被引:1,自引:2,他引:1  
选用两种耐高温多官能团环氧树脂TDE-5和AG-80为基体,T300碳纤维为增强体制备了复合材料单向板,纤维体积含量均为60%。实验测得TDE-85树脂基体复合材料单向板的弯曲模量为74.26GPa,弯曲强度为1061.4MPa,层间剪切强度(ILSS)为54.05MPa;AG-80树脂基体复合材料单向板弯曲模量为55.73GPa,弯曲强度为840.52MPa,层间剪切强度(ILSS)为44.84MPa。前者的弯曲强度、弯曲模量与剪切强度也分别高出后者26.3%、33.2%与20.5%。实验对弯曲试样断口微观形貌的受压部分和受拉部分进行了SEM和高倍数码显微镜观察。结果显示,AG-80树脂基与碳纤维的界面结合情况较差,纤维成束被拔出,纤维表面几乎没有树脂。TDE-85树脂基与碳纤维界面结合情况较好,纤维与树脂结合比较紧密,断面较为平整,只有少量纤维拔出,表面粘附大量树脂。  相似文献   

2.
研究一种适用于碳纤维增强热塑性树脂的水性乳液上浆剂。考察了上浆剂的粒度、浸润性、贮存稳定性、耐酸碱稳定性、热稳定性以及上浆后碳纤维的毛丝率;并通过实验对上浆处理前后碳纤维表面形貌的观察和单丝界面剪切强度的分析。结果表明,聚氨酯质量分数为1%和乳化剂质量分数为0.8%的上浆剂,粒径小、分散均匀和具有良好的稳定性,经上浆处理后的碳纤维与树脂基体的界面剪切强度从40.2 MPa提高到了51.9 MPa。  相似文献   

3.
碳纤维增强树脂基复合材料因其高的比强度和比模量,在航空航天等领域被广泛地应用。目前,碳纤维与树脂的界面性能是制约复合材料性能的关键因素。通过简单的水热法,在碳纤维表面合成了ZnO纳米棒阵列。在不同的生长时间下,制备了具有不同长度的ZnO纳米棒。ZnO纳米棒改性之后树脂对碳纤维的浸润性能明显提高。同时,复合材料的界面剪切强度得到明显提升,最大增幅达到了28.4%。通过扫描电子显微镜观测了单丝拔出后碳纤维的表面形貌,结果表明:改性碳纤维单丝拔出后表面粗糙而且残留了断裂的树脂基体,进一步证明碳纤维表面生长ZnO纳米棒之后界面强度得到改善。  相似文献   

4.
环氧树脂上浆剂对PAN基碳纤维性能的影响   总被引:6,自引:0,他引:6  
分别以KD-213,YD-128环氧树脂、复合环氧树脂及油酸酰胺改性的复合环氧树脂(改性环氧树脂)为主体的上浆剂对聚丙烯腈基碳纤维(PANCF)进行上浆,对上浆纤维的加工性能、表面形貌及其界面剪切强度(IFSS)进行了研究。结果表明:上浆剂改善了PANCF的耐磨性、毛丝量、耐水性及其复合材料的IFSS。其中改性环氧树脂上浆剂为最佳,可在PANCF表面形成一层完整的柔韧性光滑薄膜,上浆后的PANCF的耐磨次数为1887,毛丝量为0.14mg,吸水率小于等于0.005%,复合材料IFSS较未上浆纤维提高38.5%,达87.26GPa。  相似文献   

5.
对LNG储罐用碳纤维进行接枝改性处理,对比分析了氧化处理碳纤维和三聚氰胺接枝改性碳纤维与未改性碳纤维的表面结构、表面形貌、浸润性、拉伸性能和界面剪切性能。结果表明,对碳纤维进行氧化和接枝改性后,碳纤维表面成功接枝三聚氰胺,并以OC-NH、C-N和C=N化学键形式存在,当三聚氰胺接枝改性25min及以上时,碳纤维表面的纵向沟槽深度有不同程度减小。三聚氰胺接枝改性处理后,不同反应时间下三聚氰胺接枝改性后的碳纤维在水中和在二碘甲烷中的接触角有不同程度降低、表面能都有不同程度提高、单丝拉伸强度会有不同程度减小,且随着反应时间延长,在水中和在二碘甲烷中的接触角逐渐减小、表面能逐渐增大,单丝拉伸强度先减小后增大,反应时间为35min时改性碳纤维的单丝拉伸强度为3.75GPa。三聚氰胺接枝改性处理后,三聚氰胺接枝改性碳纤维复合材料的界面剪切强度会得到不同程度提高,且随着三聚氰胺接枝改性时间的延长,三聚氰胺接枝改性碳纤维复合材料的界面剪切强度逐渐增大。  相似文献   

6.
利用上浆法和含多壁碳纳米管(MWCNT)的上浆剂对碳纤维(CF)进行表面改性,采用手糊成型和热压成型工艺制备CF复合材料,借助扫描电子显微镜(SEM)和电子万能试验机研究MWCNT对CF表面形貌及复合材料力学性能的影响。结果表明,MWCNT在上浆剂中的分散状态会直接影响MWCNT在CF表面分布的均匀性、对CF的改性效果及CF复合材料的力学性能。质量分数为0. 5%MWCNT上浆剂对CF的改性效果较好,经0. 5%MWCNT上浆剂改性CF复丝的拉伸强度与去浆CF相比提高了70. 8%,改性CF复合材料的弯曲强度和层间剪切强度与去浆CF复合材料相比分别提高了42. 8%和72. 9%。  相似文献   

7.
周文龙  张天羽 《化学与粘合》2020,42(4):265-268,279
为了对碳纤维进行表面接枝改性处理以增强碳纤维与环氧树脂间的结合力,提升碳纤维的综合力学性能并应用于羽毛球拍中。以亚临界水作为反应介质将三聚氰胺接枝到羽毛球拍用碳纤维表面,研究了反应时间对接枝改性碳纤维的表面形貌、接触角/表面能、单丝拉伸强度、界面剪切强度和冲击韧性的影响。结果表明,上浆处理后碳纤维表面不会有上浆剂残留,但是碳纤维纵向仍然可见加工沟槽,当三聚氰胺接枝改性时间延长至25min及以上时,碳纤维纵向沟槽有所变浅,且由于三聚氰胺在碳纤维上的聚集使得碳纤维表面粗糙度增大,局部可见块状聚集。经过三聚氰胺介质改性的碳纤维的接触角都小于接枝改性前、表面能都大于接枝改性前,随着接枝反应时间的延长,改性碳纤维的接触角不断减小。三聚氰胺接枝改性处理后碳纤维的单丝拉伸强度相较于接枝改性前有不同程度的降低,且随着反应时间的延长,单丝拉伸强度呈现先减小后增大的特征。随着三聚氰胺接枝改性时间的延长,CF-W-t的界面剪切强度、裂纹形成功、拓展功和冲击功呈现逐渐增加的趋势。将三聚氰胺接枝到羽毛球拍用碳纤维表面可以增强碳纤维的综合力学性能。  相似文献   

8.
在本项工作中,选用不同的表面活性剂,通过乳液/溶剂蒸发法制备杂萘联苯共聚芳醚砜(PPBES)水分散乳液上浆剂,以改善高性能热塑性复合材料中碳纤维与PPBES树脂之间的界面相容性。为获得最佳上浆效果,研究了PPBES浓度、表面活性剂种类及浓度对上浆剂平均粒径的影响;通过扫描电子显微镜(SEM)对上浆剂的成膜能力进行了分析,并研究了上浆处理对碳纤维性能的影响,结果表明:上浆后碳纤维制备的CFs/PPBES复合材料弯曲强度高达1781 MPa,相对于未上浆CFs制备的复合材料弯曲强度提高了15.6%,界面剪切强度提升了5.0%。  相似文献   

9.
以国产CNI QM55高强高模聚丙烯腈(PAN)基碳纤维、氰酸酯树脂为原料,利用热熔法制备高强高模PAN基碳纤维预浸料,通过纤维面密度、树脂含量、挥发分含量等来评价预浸料的物理性能,结合单向板的微观形貌与层间剪切强度分析单向板的界面结合性能,并对预浸料铺制单向板的力学性能进行表征。结果表明:CNI QM55碳纤维预浸料的纤维面密度为145 g/m2,树脂质量分数为35.5%,挥发分质量分数为0.164%,预浸料的物理性能满足复合材料的性能要求;以CNI QM55碳纤维预浸料制备的单向板0°拉伸强度为2 429 MPa, 0°拉伸模量为328.4 GPa,弯曲强度为1 171 MPa,弯曲模量为280 GPa,压缩强度为783 MPa,压缩模量为257 GPa,层间剪切强度为65.2 MPa,具有较好的界面黏接性能和力学性能,可满足加工应用要求。  相似文献   

10.
采用Co—60γ射线辐照的方法对碳纤维表面进行活化处理和对丙烯酸环氧酯树脂进行辐射固化,进而制备出高性能的纤维增强聚合物复合材料。经检测,得到的复合材料的力学性能为:弯曲强度382MPa,弯曲模量24.3GPa,剪切强度276MPa,冲击强度165kJ.m^-2。  相似文献   

11.
本文研究了乙烯基酯树脂固化工艺,并根据固化工艺制备出不同上浆剂的碳纤维/乙烯基酯树脂复合材料,并对复合材料进行了力学性能和热稳定性能测试,结果表明水性聚氨酯上浆剂碳纤维较水性环氧上浆剂碳纤维制备的碳纤维/乙烯基酯树脂复合材料拉伸强度提升了16%,弯曲强度提高10%,层间剪切强度提高19%,并采用扫描电镜(SEM)分析了两种上浆剂碳纤维制备的碳纤维/乙烯基酯树脂复合材料的层间剪切断面的表面形态,发现聚氨酯上浆剂的碳纤维能够与乙烯基酯树脂有更好的界面结合性能。  相似文献   

12.
研究了成型温度和成型压力对兵乓球拍用碳纤维复合材料弯曲强度、弯曲模量和拉伸强度的影响,并对断口形貌进行了观察。结果表明,随着成型温度和成型压力的增大,碳纤维复合材料的弯曲强度和弯曲模量都呈现先增加而后减小特征,在成型温度为380℃、成型压力为4.7MPa时取得弯曲强度和弯曲模量最大值。随着成型温度和成型压力的增大,碳纤维复合材料的拉伸强度呈现先增加而后减小特征,在成型温度为380℃、成型压力为4.7MPa时取得拉伸强度最大值,为1.71GPa。碳纤维复合材料适宜的成型工艺为:成型温度380℃、成型压力4.7MPa。  相似文献   

13.
采用上浆剂法对短切碳纤维进行了界面改性,并制备了乒乓球拍用短切碳纤维增强乙烯基酯树脂片状模塑料复合板,研究了短切碳纤维长度和压机压力对复合材料拉伸性能的影响,并对断口形貌进行了观察。结果表明,随着碳纤维长度的增加,复合材料的弹性模量和拉伸强度都呈现先增加而后减小的特征,在碳纤维长度为3.9mm时取得弹性模量最大值,在碳纤维长度为9.7mm时取得拉伸强度最大值。当压机压力为2MPa时,复合材料的弹性模量约为12.8GPa;随着压机压力的增加,碳纤维复合材料的弹性模量呈现逐渐增加的趋势,在压机压力为10MPa时取得最大值,约32.2GPa,但是弹性模量提升幅度相对8MPa时较小,且断口中部分碳纤维在高压力下发生了断裂而被树脂基体填充。  相似文献   

14.
碳纤维(CF)是一种高强度、高模量的高性能纤维,被广泛应用于复合材料中,但是纤维表面的活性官能团含量低,与基体之间的界面结合性能较差。本文利用含氨基化碳纳米管(NH_2-CNTs)上浆剂对光威GQ4922/12K型碳纤维表面进行改性,改善碳纤维与环氧树脂之间的界面结合性能。通过傅里叶红外光谱、扫描电镜、X射线光电子能谱、接触角和微脱粘对改性后的纤维表面组成、表面形貌、表面自由能和界面剪切强度进行分析,发现NH_2-CNTs可成功接枝到碳纤维表面,改性后纤维表面的氧(氮)元素含量增加,与水接触角从67.1°降低到50.5°,表面自由能从32.2 mN/m增加到了41.1 mN/m;界面剪切强度在氨基化碳纳米管质量浓度为0.6%时达到最大,相比未改性纤维从62.3 MPa提高到76.8 MPa,提高了23.3%。结果表明通过在上浆剂中引入氨基化碳纳米管,可以增加碳纤维表面活性,提高碳纤维与基体树脂的界面结合性能。  相似文献   

15.
采用丙酮和石油醚索氏提取的方法,进行了碳纤维表面涂层去除的研究工作。利用AFM、SEM和XPS对碳纤维表面形貌、微观结构以及元素含量进行分析,并对碳纤维及其环氧复合材料的性能进行了表征。结果表明:碳纤维经丙酮抽提24 h,石油醚再抽提24 h后,纤维表面的涂层已完全去除,单丝拉伸强度略有降低,降低幅度为2.31%,但碳纤维/环氧树脂复合材料的界面剪切强度增加4.10%,层间剪切强度增加3.49%,表明该涂层去除方法具有较好的实验效果。  相似文献   

16.
复合材料的界面特性与其宏观力学性能密切相关:界面层的厚度和模量决定了界面处应力的传递,界面层的化学组成也会间接影响界面粘结强度,因此研究复合材料界面层组成及性能的影响因素是十分必要的。因此,碳纤维自身的表面物理、化学性质和碳纤维表面涂覆的上浆剂成为了重要考虑因素。本文结合日本东丽关于碳纤维表面处理、上浆剂种类及上浆工艺的专利及其它文献,综述了表面处理方法和上浆剂种类对界面粘结性能的影响。  相似文献   

17.
碳纤维湿法缠绕用环氧树脂基体研究   总被引:1,自引:0,他引:1  
以TDE-85树脂和AFG-90树脂为主体树脂,混合芳香胺为固化剂,研究了一种适合于碳纤维复合材料湿法缠绕成型的树脂配方。结果表明,该树脂的黏度低(<550 mPa·s)、适用期长,其浇铸体具有优异的力学性能,其拉伸强度为107 MPa,拉伸模量为4.09 GPa,弯曲强度为161 MPa,弯曲模量为3.88 GPa,断裂伸长率超过6%。用其制备的T-700碳纤维缠绕复合材料界面粘接好,NOL环层间剪切强度达到66.8 MPa,拉伸强度达到2.44 GPa。  相似文献   

18.
以蓖麻油、纳米微晶纤维素为主要原料制备了溶剂型不干胶,研究了纳米微晶纤维素含量对不干胶透气性、胶黏强度、机械强度、储能模量的影响。结果表明:纳米微晶纤维素质量分数为2%时,不干胶的空气透过率为12.7%,胶黏强度为3.4 MPa,拉伸强度为15.6 MPa,剪切强度为4.8 MPa(24 h),初黏强度为0.63 MPa,剥离强度为1.5 N/mm,储能模量为0.07~0.29 MPa(30~50℃),不干胶的性能最佳。  相似文献   

19.
《粘接》2018,(11)
采用E-44、LNBR、SiO和KH-570分别对AG-80/DMDC环氧体系进行增韧改性,研究了2增韧环氧树脂体系的力学性能和在不同pH条件下的吸水性能。结果表明,当E-44、LNBR、SiO和KH-570用量分别为50.0%、10.0%、3.0%、2.0%时,复合材料的拉伸强度、弯曲强度和2弯曲模量分别为73.4 MPa、84.0 MPa、1.5 GPa。该增韧环氧树脂体系在中性和碱性条件下,具有较好的耐水性能。进一步以AG-80增韧改性体系作为基材,采用KH-570对碳纤维布进行改性,并利用拉力试验机,红外光谱仪和偏光显微镜对碳纤维复合材料进行表征。结果表明,改性碳纤维复合材料的拉伸强度、弯曲强度和弯曲模量分别为114.7 MPa、192.5 MPa和7.6GPa,比未改性前分别提高了26.3%、41.9%和40.7%,界面性能得到了明显改善。  相似文献   

20.
纳米改性碳/酚醛树脂基复合材料性能研究   总被引:1,自引:0,他引:1  
针对碳/酚醛树脂基复合材料层间剪切强度低的缺点,采用纳米填料进行改性。测试了2种纳米填料(纳米碳纤维、碳纳米管)改性后酚醛树脂的热解性能,研究了纳米填料对复合材料力学性能、烧蚀性能以及高温炭化后力学性能的影响,并观察分析了复合材料测试后的微观形貌。研究结果表明,纳米填料改性后,复合材料的力学性能、烧蚀性能均有所改善。其中,纳米碳纤维改性后复合材料的常温层间剪切强度达到24.9 MPa,氧乙炔线烧蚀率为22.75μm/s,质量烧蚀率为23.58 mg/s。纳米碳纤维表面粗糙,与树脂基体的界面强度高,因此其改性后的力学性能和烧蚀性能优于碳纳米管。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号