共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang Yiwei Zhou Jian Zheng Lianyu Gogu Christian 《Journal of Intelligent Manufacturing》2022,33(3):809-830
Journal of Intelligent Manufacturing - The fault diagnostics of rotating components are crucial for most mechanical systems since the rotating components faults are the main form of failures of... 相似文献
2.
In the image fusion field, the design of deep learning-based fusion methods is far from routine. It is invariably fusion-task specific and requires a careful consideration. The most difficult part of the design is to choose an appropriate strategy to generate the fused image for a specific task in hand. Thus, devising learnable fusion strategy is a very challenging problem in the community of image fusion. To address this problem, a novel end-to-end fusion network architecture (RFN-Nest) is developed for infrared and visible image fusion. We propose a residual fusion network (RFN) which is based on a residual architecture to replace the traditional fusion approach. A novel detail-preserving loss function, and a feature enhancing loss function are proposed to train RFN. The fusion model learning is accomplished by a novel two-stage training strategy. In the first stage, we train an auto-encoder based on an innovative nest connection (Nest) concept. Next, the RFN is trained using the proposed loss functions. The experimental results on public domain data sets show that, compared with the existing methods, our end-to-end fusion network delivers a better performance than the state-of-the-art methods in both subjective and objective evaluation. The code of our fusion method is available at https://github.com/hli1221/imagefusion-rfn-nest. 相似文献
3.
Computational Visual Media - Deep convolutional neural networks (DCNNs) have been widely deployed in real-world scenarios. However, DCNNs are easily tricked by adversarial examples, which present... 相似文献
4.
针对现有融合方法缺乏通用性的问题,提出一种结合空间注意力和通道注意力的特征融合网络,设计一个端到端融合框架,采用两阶段的训练策略进行训练。在第一个阶段,训练一个自编码器用来提取图像的特征;在第二个阶段,使用提出的融合损失函数对融合网络进行训练。实验结果表明,该算法既能保留红外图像显著目标特征,还能在保留可见光图像细节上有很好的特性。主观和客观的实验分析验证了该算法的有效性。 相似文献
5.
为有效滤除灰度图像中的椒盐噪声并保留图像的边缘及细节信息,提出一种简化的阈值单向衰减脉冲耦合神经网络(PCNN)点火矩阵自适应图像滤波方法,简化的PCNN结构减少了所需参数并提高了运算速度。该方法通过对PCNN点火矩阵的分析,定位出被噪声污染的像素,只对噪声像素进行滤波,因而有效地保留了图像的细节信息;并根据椒盐噪声的特点,动态估计图像的噪声强度,自适应地选择滤波窗口的大小和滤波次数。实验结果表明提出方法较常见的图像降噪方法在滤波效果、自适应性及保留图像细节方面有明显的优势。 相似文献
6.
针对大规模语料中不同语体的特征难以挖掘、需要大量专业知识和人力的问题,提出了一种自动挖掘能区分不同语体的特征的方法。首先,将语体表示成词、词类、标点符号、它们的2元、句法结构及多种组合特征;然后,使用注意力机制和多层感知机(MLP)的组合模型(如注意力网络)把语体分类成小说、新闻和课本,并在过程中自动地提取出能够帮助区分语体的重要特征;最后,通过对这些特征的进一步分析,可以得到不同语体的特点及一些语言学结论。实验结果显示,小说、新闻和课本在词、主题词、词的依存关系、词类、标点符号和句法结构都有显著的差异,进一步表明了人们在使用语言时因交际对象、目的、内容和环境的不同,对词汇、词类、标点和句法的运用上会自然地呈现出某种不同。 相似文献
7.
中文地名地址的标准化在当前智慧城市的建设中起到至关重要的作用。传统的地名地址标准化技术通常使用基于文本字符层面的相似度计算或规则库匹配的方法,对复杂、特殊或冗余地址的处理效果较差。通过将地址标准化任务转换为针对地址相似的匹配度计算任务,提出了一种融合注意力机制与多层次语义表征的地址匹配算法。首先依据地址文本特殊的语法结构,利用Trie语法树构建标准地址树;而后基于注意力机制,利用Bi-LSTM网络与CNN网络生成地址对的多层次语义表示;最后通过曼哈顿距离计算相似度。在自主构建的数据集上,提出的SGAM模型的匹配准确度(91.22%)相比TextRCNN、FastText、基于注意力的卷积神经网络(ABCNN)等模型提升了4%~10%,表明SGAM模型在地址匹配任务上有着更好的性能表现。 相似文献
8.
This paper presents an incremental neural network (INeN) for the segmentation of tissues in ultrasound images. The performances of the INeN and the Kohonen network are investigated for ultrasound image segmentation. The elements of the feature vectors are individually formed by using discrete Fourier transform (DFT) and discrete cosine transform (DCT). The training set formed from blocks of 4x4 pixels (regions of interest, ROIs) on five different tissues designated by an expert is used for the training of the Kohonen network. The training set of the INeN is formed from randomly selected ROIs of 4x4 pixels in the image. Performances of both 2D-DFT and 2D-DCT are comparatively examined for the segmentation of ultrasound images. 相似文献
9.
针对目前糖尿病视网膜病变识别主要依赖于医生的临床经验,病变特征难以用肉眼区分且识别率较低等问题,提出一种基于注意力神经网络的糖尿病视网膜病变分类方法。首先,对原始数据集中的视网膜图像进行归一化、直方图均衡化和数据增强等预处理;其次,调整经典的DenseNet,在避免梯度消失和保证分类精度的前提下,有针对性地减少连接数,提出了2-DenseNet,同时将注意力模块嵌入到2-DenseNet中,指导网络关注视网膜图像中的渗出物、厚血管和微动脉瘤等特征,使用改进后的网络对预处理后的图像进行训练并测试;最后,在公开的Kaggle数据集上对多个网络进行对比,实验结果表明,该网络对糖尿病视网膜病变的分类性能高于其他对比网络。 相似文献
10.
针对双流法进行视频动作识别时忽略特征通道间的相互联系、特征存在大量冗余的时空信息等问题,提出一种基于双流时空注意力机制的端到端的动作识别模型T-STAM,实现了对视频关键时空信息的充分利用。首先,将通道注意力机制引入到双流基础网络中,通过对特征通道间的依赖关系进行建模来校准通道信息,提高特征的表达能力。其次,提出一种基于CNN的时间注意力模型,使用较少的参数学习每帧的注意力得分,重点关注运动幅度明显的帧。同时提出一种多空间注意力模型,从不同角度计算每帧中各个位置的注意力得分,提取多个运动显著区域,并且对时空特征进行融合进一步增强视频的特征表示。最后,将融合后的特征输入到分类网络,按不同权重融合两流输出得到动作识别结果。在数据集HMDB51和UCF101上的实验结果表明T-STAM能有效地识别视频中的动作。 相似文献
11.
针对现有立体匹配算法在弱纹理、重复纹理、反射表面等病态区域误匹配率高的问题,提出一种基于像素注意力的双通道立体匹配卷积神经网络PASNet,该网络包括双通道注意力沙漏型子网络和注意力U型子网络。首先,通过双通道注意力沙漏型子网络提取输入图像的特征图;其次,通过关联层得到特征图的代价矩阵;最后,利用注意力U型子网络对代价矩阵进行代价聚合,输出视差图。在KITTI数据集上的实验结果表明,所提出的网络能有效解决病态区域误匹配率高等问题,提升立体匹配精度。 相似文献
12.
文本情感分析的目的是判断文本的情感类型。传统的基于神经网络的研究方法主要依赖于无监督训练的词向量,但这些词向量无法准确体现上下文语境关系;常用于处理情感分析问题的循环神经网络(RNN),模型参数众多,训练难度较大。为解决上述问题,提出了基于迁移学习的分层注意力神经网络(TLHANN)的情感分析算法。首先利用机器翻译任务训练一个用于在上下文中理解词语的编码器;然后,将这个编码器迁移到情感分析任务中,并将编码器输出的隐藏向量与无监督训练的词向量结合。在情感分析任务中,使用双层神经网络,每层均采用简化的循环神经网络结构——最小门单元(MGU),有效减少了参数个数,并引入了注意力机制提取重要信息。实验结果证明,所提算法的分类准确率与传统循环神经网络算法、支持向量机(SVM)算法相比分别平均提升了8.7%及23.4%。 相似文献
13.
为解决现有视频流隐藏信息检测中,人工检测特征设计难度不断加大的问题,提出一种基于卷积神经网络的视频流隐藏信息检测方法。在神经网络中构建残差学习单元,避免深层次卷积神经网络在训练时的梯度消失,利用深层神经网络自动从数据中挖掘检测特征,在此基础上引入量化截断操作,增加检测模型多样性,提升检测性能。使用FFmpeg与x264编码标准CIF序列生成的视频进行实验,实验结果表明,该方法相比现有方法具有更高的检测准确率。 相似文献
14.
基于直觉模糊ART神经网络的群事件检测方法 总被引:1,自引:0,他引:1
描述了态势评估系统中的目标编群问题、目标群处理流程和群事件的检测。结合直觉模糊贴近度理论,构造了直觉模糊ART神经网络。设计了网络的运行机制和网络权值向量的学习机制。给出了一个具体实例,检验了直觉模糊ART神经网络的目标编群效果,为群事件检测提供了一条有效途径。 相似文献
15.
Applied Intelligence - Traffic flow forecasting is of great significance to urban traffic control and public safety applications. The key challenge of traffic flow forecasting is how to capture the... 相似文献
16.
《Pattern recognition letters》1999,20(11-13):1241-1248
A novel classifier for the analysis of remote-sensing images is proposed. Such a classifier is based on Radial Basis Function (RBF) neural networks and relies on an incremental-learning technique. This technique allows the periodical acquisition of new information whenever a new training set becomes available, while preserving the knowledge learnt by the network on previous training sets. In addition, in each retraining phase, the network architecture is automatically updated so that new classes may be considered. These characteristics make the proposed neural classifier a promising tool for several remote-sensing applications. 相似文献
17.
18.
为进一步提高端到端数据传输的吞吐率,提出基于DHT发现多条覆盖网路径的方法.一条覆盖网路径由若干跳构成,而数据吞吐率依赖各跳传输性能的瓶颈.为消除瓶颈,根据数据到达结点的吞吐率选择往返延迟时间较小的若干下一跳结点,使得数据不会在该结点拥塞.结点DHT维护着到各下一跳结点的往返延迟时间,基于DHT可发现端-端多条覆盖路径,从而实现并行数据传输.实验结果表明,该方法可找到适合的多条端到端路径,并行传输可取得比单路径传榆更大的吞吐率. 相似文献
19.
随着互联网的快速发展,推荐系统可以用来处理信息过载的问题。由于传统推荐系统的诸多问题导致其无法处理发掘隐藏信息,提出一种自适应图卷积注意力神经协同推荐算法(ANGCACF)。首先获取用户和项目交互图,通过图卷积神经网络自适应的聚合用户和项目特征信息;其次对用户和项目特征信息添加自适应扩充数据,以解决数据稀疏性,利用注意力机制对用户和项目特征信息及添加的自适应扩充数据重新分配权重;最后将得到的用户和项目特征表示使用基于矩阵分解的协同过滤的算法框架得出最终推荐结果。在MovieLens-1M、MovieLens-100K和 Amazon-baby三个公开数据集上的实验表明,该算法在推荐准确率、召回率、MRR、命中率和 NDCG 五个指标上均优于基线方法。 相似文献
20.
随着人工智能技术的爆炸式发展,机器学习、深度学习等技术在人脸识别、行人检测和视频跟踪等各个领域得到了广泛的应用,其中利用目标检测进行室内人数统计一直以来是一个热门的研究。室内监控画面存在人群相互遮挡,且目标特征模糊等问题,往往导致检测准确率低,误检率和漏检率高等情况的出现。为了解决此问题,提出了一种基于全局注意力的室内人数统计模型,引入注意力机制,对目标检测算法YOLOv3进行改进,通过提取更多小人头或模糊人头的特征来增强检测能力。实验结果表明,改进后的网络模型具有更高的召回率和平均精度。 相似文献