首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A new nonparametric estimate for nonlinear discrete-time dynamic systems is considered. The new algorithm is weakly consistent under a specific condition on the transition probability operator of a stationary Markov process. The estimate is applicable when a parametric state model of the system is difficult to choose.  相似文献   

3.
Statistical relational learning (SRL) is a subarea in machine learning which addresses the problem of performing statistical inference on data that is correlated and not independently and identically distributed (i.i.d.)—as is generally assumed. For the traditional i.i.d. setting, distribution-free bounds exist, such as the Hoeffding bound, which are used to provide confidence bounds on the generalization error of a classification algorithm given its hold-out error on a sample size of N. Bounds of this form are currently not present for the type of interactions that are considered in the data by relational classification algorithms. In this paper, we extend the Hoeffding bounds to the relational setting. In particular, we derive distribution-free bounds for certain classes of data generation models that do not produce i.i.d. data and are based on the type of interactions that are considered by relational classification algorithms that have been developed in SRL. We conduct empirical studies on synthetic and real data which show that these data generation models are indeed realistic and the derived bounds are tight enough for practical use.  相似文献   

4.
The simultaneous perturbation stochastic approximation (SPSA) algorithm has attracted considerable attention for challenging optimization problems where it is difficult or impossible to obtain a direct gradient of the objective (say, loss) function. The approach is based on a highly efficient simultaneous perturbation approximation to the gradient based on loss function measurements. SPSA is based on picking a simultaneous perturbation (random) vector in a Monte Carlo fashion as part of generating the approximation to the gradient. This paper derives the optimal distribution for the Monte Carlo process. The objective is to minimize the mean square error of the estimate. The authors also consider maximization of the likelihood that the estimate be confined within a bounded symmetric region of the true parameter. The optimal distribution for the components of the simultaneous perturbation vector is found to be a symmetric Bernoulli in both cases. The authors end the paper with a numerical study related to the area of experiment design  相似文献   

5.
Uncertainty quantification (UQ) refers to quantitative characterization and reduction of uncertainties present in computer model simulations. It is widely used in engineering and geophysics fields to assess and predict the likelihood of various outcomes. This paper describes a UQ platform called UQ-PyL (Uncertainty Quantification Python Laboratory), a flexible software platform designed to quantify uncertainty of complex dynamical models. UQ-PyL integrates different kinds of UQ methods, including experimental design, statistical analysis, sensitivity analysis, surrogate modeling and parameter optimization. It is written in Python language and runs on all common operating systems. UQ-PyL has a graphical user interface that allows users to enter commands via pull-down menus. It is equipped with a model driver generator that allows any computer model to be linked with the software. We illustrate the different functions of UQ-PyL by applying it to the uncertainty analysis of the Sacramento Soil Moisture Accounting Model. We will also demonstrate that UQ-PyL can be applied to a wide range of applications.  相似文献   

6.
The iteratively reweighted multivariate alteration detection (IR-MAD) algorithm may be used both for unsupervised change detection in multi- and hyperspectral remote sensing imagery and for automatic radiometric normalization of multitemporal image sequences. Principal components analysis (PCA), as well as maximum autocorrelation factor (MAF) and minimum noise fraction (MNF) analyses of IR-MAD images, both linear and kernel-based (nonlinear), may further enhance change signals relative to no-change background. IDL (Interactive Data Language) implementations of IR-MAD, automatic radiometric normalization, and kernel PCA/MAF/MNF transformations are presented that function as transparent and fully integrated extensions of the ENVI remote sensing image analysis environment. The train/test approach to kernel PCA is evaluated against a Hebbian learning procedure. Matlab code is also available that allows fast data exploration and experimentation with smaller datasets. New, multiresolution versions of IR-MAD that accelerate convergence and that further reduce no-change background noise are introduced. Computationally expensive matrix diagonalization and kernel image projections are programmed to run on massively parallel CUDA-enabled graphics processors, when available, giving an order of magnitude enhancement in computational speed. The software is available from the authors' Web sites.  相似文献   

7.
The polynomial chaos (PC) method has been widely adopted as a computationally feasible approach for uncertainty quantification (UQ). Most studies to date have focused on non-stiff systems. When stiff systems are considered, implicit numerical integration requires the solution of a non-linear system of equations at every time step. Using the Galerkin approach the size of the system state increases from n to S × n, where S is the number of PC basis functions. Solving such systems with full linear algebra causes the computational cost to increase from O(n3) to O(S3n3). The S3-fold increase can make the computation prohibitive. This paper explores computationally efficient UQ techniques for stiff systems using the PC Galerkin, collocation, and collocation least-squares (LS) formulations. In the Galerkin approach, we propose a modification in the implicit time stepping process using an approximation of the Jacobian matrix to reduce the computational cost. The numerical results show a run time reduction with no negative impact on accuracy. In the stochastic collocation formulation, we propose a least-squares approach based on collocation at a low-discrepancy set of points. Numerical experiments illustrate that the collocation least-squares approach for UQ has similar accuracy with the Galerkin approach, is more efficient, and does not require any modification of the original code.  相似文献   

8.
Clustering algorithms are a useful tool to explore data structures and have been employed in many disciplines. The focus of this paper is the partitioning clustering problem with a special interest in two recent approaches: kernel and spectral methods. The aim of this paper is to present a survey of kernel and spectral clustering methods, two approaches able to produce nonlinear separating hypersurfaces between clusters. The presented kernel clustering methods are the kernel version of many classical clustering algorithms, e.g., K-means, SOM and neural gas. Spectral clustering arise from concepts in spectral graph theory and the clustering problem is configured as a graph cut problem where an appropriate objective function has to be optimized. An explicit proof of the fact that these two paradigms have the same objective is reported since it has been proven that these two seemingly different approaches have the same mathematical foundation. Besides, fuzzy kernel clustering methods are presented as extensions of kernel K-means clustering algorithm.  相似文献   

9.
The idea of hierarchical gradient methods for optimization is considered. It is shown that the proposed approach provides powerful means to cope with some global convergence problems characteristic of the classical gradient methods. Concerning global convergence problems, four topics are addressed: The detour effect, the problem of multiscale models, the problem of highly ill-conditioned objective functions, and the problem of local-minima traps related to ambiguous regions of attractions. The great potential of hierarchical gradient algorithms is revealed through a hierarchical Gauss-Newton algorithm for unconstrained nonlinear least-squares problems. The algorithm, while maintaining a superlinear convergence rate like the common conjugate gradient or quasi-Newton methods, requires the evaluation of partial derivatives with respect to only one variable on each iteration. This property enables economized consumption of CPU time in case the computer codes for the derivatives are intensive CPU consumers, e.g., when the gradient evaluations of ODE or PDE models are produced by numerical differentiation. The hierarchical Gauss-Newton algorithm is extended to handle interval constraints on the variables and its effectiveness demonstrated by computational results.  相似文献   

10.
We consider a particular problem which arises when apply-ing the method of gradient projection for solving constrained optimiza-tion and finite dimensional variational inequalities on the convex set formed by the convex hull of the standard basis unit vectors. The method is especially important for relaxation labeling techniques applied to problems in artificial intelligence. Zoutendijk's method for finding feasible directions, which is relatively complicated in general situations, yields a very simple finite algorithm for this problem. We present an extremely simple algorithm for performing the gradient projection and an independent verification of its correctness.  相似文献   

11.
Projected gradient methods for nonnegative matrix factorization   总被引:13,自引:0,他引:13  
Lin CJ 《Neural computation》2007,19(10):2756-2779
Nonnegative matrix factorization (NMF) can be formulated as a minimization problem with bound constraints. Although bound-constrained optimization has been studied extensively in both theory and practice, so far no study has formally applied its techniques to NMF. In this letter, we propose two projected gradient methods for NMF, both of which exhibit strong optimization properties. We discuss efficient implementations and demonstrate that one of the proposed methods converges faster than the popular multiplicative update approach. A simple Matlab code is also provided.  相似文献   

12.
The pre-image problem in kernel methods   总被引:2,自引:0,他引:2  
In this paper, we address the problem of finding the pre-image of a feature vector in the feature space induced by a kernel. This is of central importance in some kernel applications, such as on using kernel principal component analysis (PCA) for image denoising. Unlike the traditional method in which relies on nonlinear optimization, our proposed method directly finds the location of the pre-image based on distance constraints in the feature space. It is noniterative, involves only linear algebra and does not suffer from numerical instability or local minimum problems. Evaluations on performing kernel PCA and kernel clustering on the USPS data set show much improved performance.  相似文献   

13.
A novel fuzzy nonlinear classifier, called kernel fuzzy discriminant analysis (KFDA), is proposed to deal with linear non-separable problem. With kernel methods KFDA can perform efficient classification in kernel feature space. Through some nonlinear mapping the input data can be mapped implicitly into a high-dimensional kernel feature space where nonlinear pattern now appears linear. Different from fuzzy discriminant analysis (FDA) which is based on Euclidean distance, KFDA uses kernel-induced distance. Theoretical analysis and experimental results show that the proposed classifier compares favorably with FDA.  相似文献   

14.
This paper is based on the premise that legal reasoning involves an evaluation of facts, principles, and legal precedent that are inexact, and uncertainty-based methods represent a useful approach for modeling this type of reasoning. By applying three different uncertainty-based methods to the same legal reasoning problem, a comparative study can be constructed. The application involves modeling legal reasoning for the assessment of potential liability due to defective product design. The three methods used for this study include: a Bayesian belief network, a fuzzy logic system, and an artificial neural network. A common knowledge base is used to implement the three solutions and provide an unbiased framework for evaluation. The problem framework and the construction of the common knowledgebase are described. The theoretical background for Bayesian belief networks, fuzzy logic inference, and multilayer perceptron with backpropagation are discussed. The design, implementation, and results with each of these systems are provided. The fuzzy logic system outperformed the other systems by reproducing the opinion of a skilled attorney in 99 of 100 cases, but the fuzzy logic system required more effort to construct the rulebase. The neural network method also reproduced the expert's opinions very well, but required less effort to develop. ©1999 John Wiley & Sons, Inc.  相似文献   

15.
Classical continuum theories are formulated based on the assumption of large scale separation. For scale-coupling problems involving uncertainties, novel multiscale methods are desired. In this study, by employing the generalized variational principles, a Green-function-based multiscale method is formulated to decompose a boundary value problem with random microstructure into a slow scale deterministic problem and a fast scale stochastic one. The slow scale problem corresponds to common engineering practices by smearing out fine-scale microstructures. The fast scale problem evaluates fluctuations due to random microstructures, which is important for scale-coupling systems and particularly failure problems. Two numerical examples are provided at the end.  相似文献   

16.
First, the all-important no free lunch theorems are introduced. Next, kernel methods, support vector machines (SVMs), preprocessing, model selection, feature selection, SVM software and the Fisher kernel are introduced and discussed. A hidden Markov model is trained on foreign exchange data to derive a Fisher kernel for an SVM, the DC algorithm and the Bayes point machine (BPM) are also used to learn the kernel on foreign exchange data. Further, the DC algorithm was used to learn the parameters of the hidden Markov model in the Fisher kernel, creating a hybrid algorithm. The mean net returns were positive for BPM; and BPM, the Fisher kernel, the DC algorithm and the hybrid algorithm were all improvements over a standard SVM in terms of both gross returns and net returns, but none achieved net returns as high as the genetic programming approach employed by Neely, Weller, and Dittmar (1997) and published in Neely, Weller, and Ulrich (2009). Two implementations of SVMs for Windows with semi-automated parameter selection are built.  相似文献   

17.
《国际计算机数学杂志》2012,89(7):1039-1053
In this paper we present a new class of memory gradient methods for unconstrained optimization problems and develop some useful global convergence properties under some mild conditions. In the new algorithms, trust region approach is used to guarantee the global convergence. Numerical results show that some memory gradient methods are stable and efficient in practical computation. In particular, some memory gradient methods can be reduced to the BB method in some special cases.  相似文献   

18.
An extension of the Davidon-Fletcher-Powell algorithm to optimal control problems is suggested. An example is included to illustrate the use of the algorithm and compare its convergence properties with other well-known algorithms.  相似文献   

19.
This paper evaluates a set of computational algorithms for the automatic estimation of human postures and gait properties from signals provided by an inertial body sensor. The use of a single sensor device imposes limitations for the automatic estimation of relevant properties, like step length and gait velocity, as well as for the detection of standard postures like sitting or standing. Moreover, the exact location and orientation of the sensor are also a common restriction that is relaxed in this study.Based on accelerations provided by a sensor, known as the ‘9×2’, three approaches are presented extracting kinematic information from the user motion and posture. First, a two-phases procedure implementing feature extraction and support vector machine based classification for daily living activity monitoring is presented. Second, support vector regression is applied on heuristically extracted features for the automatic computation of spatiotemporal properties during gait. Finally, sensor information is interpreted as an observation of a particular trajectory of the human gait dynamical system, from which a reconstruction space is obtained, and then transformed using standard principal components analysis, finally support vector regression is used for prediction.Daily living activities are detected and spatiotemporal parameters of human gait are estimated using methods sharing a common structure based on feature extraction and kernel methods. The approaches presented are susceptible to be used for medical purposes.  相似文献   

20.
Xiaohai  Dominik  Bernhard   《Neurocomputing》2008,71(7-9):1248-1256
We propose a method to quantify the complexity of conditional probability measures by a Hilbert space seminorm of the logarithm of its density. The concept of reproducing kernel Hilbert spaces (RKHSs) is a flexible tool to define such a seminorm by choosing an appropriate kernel. We present several examples with artificial data sets where our kernel-based complexity measure is consistent with our intuitive understanding of complexity of densities.

The intention behind the complexity measure is to provide a new approach to inferring causal directions. The idea is that the factorization of the joint probability measure P(effect,cause) into P(effect|cause)P(cause) leads typically to “simpler” and “smoother” terms than the factorization into P(cause|effect)P(effect). Since the conventional constraint-based approach of causal discovery is not able to determine the causal direction between only two variables, our inference principle can in particular be useful when combined with other existing methods.

We provide several simple examples with real-world data where the true causal directions indeed lead to simpler (conditional) densities.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号