首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Guefrechi  Sarra  Jabra  Marwa Ben  Ammar  Adel  Koubaa  Anis  Hamam  Habib 《Multimedia Tools and Applications》2021,80(21-23):31803-31820

The whole world is facing a health crisis, that is unique in its kind, due to the COVID-19 pandemic. As the coronavirus continues spreading, researchers are concerned by providing or help provide solutions to save lives and to stop the pandemic outbreak. Among others, artificial intelligence (AI) has been adapted to address the challenges caused by pandemic. In this article, we design a deep learning system to extract features and detect COVID-19 from chest X-ray images. Three powerful networks, namely ResNet50, InceptionV3, and VGG16, have been fine-tuned on an enhanced dataset, which was constructed by collecting COVID-19 and normal chest X-ray images from different public databases. We applied data augmentation techniques to artificially generate a large number of chest X-ray images: Random Rotation with an angle between ??10 and 10 degrees, random noise, and horizontal flips. Experimental results are encouraging: the proposed models reached an accuracy of 97.20?% for Resnet50, 98.10?% for InceptionV3, and 98.30?% for VGG16 in classifying chest X-ray images as Normal or COVID-19. The results show that transfer learning is proven to be effective, showing strong performance and easy-to-deploy COVID-19 detection methods. This enables automatizing the process of analyzing X-ray images with high accuracy and it can also be used in cases where the materials and RT-PCR tests are limited.

  相似文献   

2.
Multimedia Tools and Applications - Since early 2020, Coronavirus Disease 2019 (COVID-19) has spread widely around the world. COVID-19 infects the lungs, leading to breathing difficulties. Early...  相似文献   

3.
4.
Neural Computing and Applications - In late 2019, a new Coronavirus disease (COVID-19) appeared in Wuhan, Hubei Province, China. The virus began to spread throughout many countries, affecting a...  相似文献   

5.
6.
Pattern Analysis and Applications - COVID-19 continues to have catastrophic effects on the lives of human beings throughout the world. To combat this disease it is necessary to screen the affected...  相似文献   

7.

The coronavirus COVID-19 pandemic is today’s major public health crisis, we have faced since the Second World War. The pandemic is spreading around the globe like a wave, and according to the World Health Organization’s recent report, the number of confirmed cases and deaths are rising rapidly. COVID-19 pandemic has created severe social, economic, and political crises, which in turn will leave long-lasting scars. One of the countermeasures against controlling coronavirus outbreak is specific, accurate, reliable, and rapid detection technique to identify infected patients. The availability and affordability of RT-PCR kits remains a major bottleneck in many countries, while handling COVID-19 outbreak effectively. Recent findings indicate that chest radiography anomalies can characterize patients with COVID-19 infection. In this study, Corona-Nidaan, a lightweight deep convolutional neural network (DCNN), is proposed to detect COVID-19, Pneumonia, and Normal cases from chest X-ray image analysis; without any human intervention. We introduce a simple minority class oversampling method for dealing with imbalanced dataset problem. The impact of transfer learning with pre-trained CNNs on chest X-ray based COVID-19 infection detection is also investigated. Experimental analysis shows that Corona-Nidaan model outperforms prior works and other pre-trained CNN based models. The model achieved 95% accuracy for three-class classification with 94% precision and recall for COVID-19 cases. While studying the performance of various pre-trained models, it is also found that VGG19 outperforms other pre-trained CNN models by achieving 93% accuracy with 87% recall and 93% precision for COVID-19 infection detection. The model is evaluated by screening the COVID-19 infected Indian Patient chest X-ray dataset with good accuracy.

  相似文献   

8.
Neural Computing and Applications - COVID-19 has emerged as a global crisis with unprecedented socio-economic challenges, jeopardizing our lives and livelihoods for years to come. The...  相似文献   

9.
通过EasyDL平台搭建基于CT影像的新冠肺炎检测系统,利用人工智能在图像识别上能够自动学习图像特征及区分图像特征之间差异的特点,来检测病人是否患有新冠肺炎.实验结果显示,新冠肺炎识别精确度为100.00%,感染性肺疾病识别精确度为98.06%,非感染性肺疾病识别精确度为93.64%,正常肺部识别精确度为98.03%....  相似文献   

10.

The 2019 novel coronavirus disease (COVID-19), with a starting point in China, has spread rapidly among people living in other countries and is approaching approximately 101,917,147 cases worldwide according to the statistics of World Health Organization. There are a limited number of COVID-19 test kits available in hospitals due to the increasing cases daily. Therefore, it is necessary to implement an automatic detection system as a quick alternative diagnosis option to prevent COVID-19 spreading among people. In this study, five pre-trained convolutional neural network-based models (ResNet50, ResNet101, ResNet152, InceptionV3 and Inception-ResNetV2) have been proposed for the detection of coronavirus pneumonia-infected patient using chest X-ray radiographs. We have implemented three different binary classifications with four classes (COVID-19, normal (healthy), viral pneumonia and bacterial pneumonia) by using five-fold cross-validation. Considering the performance results obtained, it has been seen that the pre-trained ResNet50 model provides the highest classification performance (96.1% accuracy for Dataset-1, 99.5% accuracy for Dataset-2 and 99.7% accuracy for Dataset-3) among other four used models.

  相似文献   

11.
Applied Intelligence - This 21st century is notable for experiencing so many disturbances at economic, social, cultural, and political levels in the entire world. The outbreak of novel corona virus...  相似文献   

12.
Multimedia Tools and Applications - Coronavirus-caused diseases are common worldwide and might worsen both human health and the world economy. Most people may instantly encounter coronavirus in...  相似文献   

13.
Multimedia Tools and Applications - The COVID-19 pandemic has affected all the countries in the world with its droplet spread mode. The colossal amount of cases has strained all the healthcare...  相似文献   

14.
Li  Daqiu  Fu  Zhangjie  Xu  Jun 《Applied Intelligence》2021,51(5):2805-2817

With the outbreak of COVID-19, medical imaging such as computed tomography (CT) based diagnosis is proved to be an effective way to fight against the rapid spread of the virus. Therefore, it is important to study computerized models for infectious detection based on CT imaging. New deep learning-based approaches are developed for CT assisted diagnosis of COVID-19. However, most of the current studies are based on a small size dataset of COVID-19 CT images as there are less publicly available datasets for patient privacy reasons. As a result, the performance of deep learning-based detection models needs to be improved based on a small size dataset. In this paper, a stacked autoencoder detector model is proposed to greatly improve the performance of the detection models such as precision rate and recall rate. Firstly, four autoencoders are constructed as the first four layers of the whole stacked autoencoder detector model being developed to extract better features of CT images. Secondly, the four autoencoders are cascaded together and connected to the dense layer and the softmax classifier to constitute the model. Finally, a new classification loss function is constructed by superimposing reconstruction loss to enhance the detection accuracy of the model. The experiment results show that our model is performed well on a small size COVID-2019 CT image dataset. Our model achieves the average accuracy, precision, recall, and F1-score rate of 94.7%, 96.54%, 94.1%, and 94.8%, respectively. The results reflect the ability of our model in discriminating COVID-19 images which might help radiologists in the diagnosis of suspected COVID-19 patients.

  相似文献   

15.
Artificial Intelligence Review - Since early 2020, the whole world has been facing the deadly and highly contagious disease named coronavirus disease (COVID-19) and the World Health Organization...  相似文献   

16.
International Journal of Speech Technology - Researchers and scientists have been conducting plenty of research on COVID-19 since its outbreak. Healthcare professionals, laboratory technicians, and...  相似文献   

17.

In this study, an attempt has been made to differentiate Novel Coronavirus-2019 (COVID-19) conditions from healthy subjects in Chest radiographs using a simplified end-to-end Convolutional Neural Network (CNN) model and occlusion sensitivity maps. Early detection and faster automated screening of the COVID-19 patients is essential. For this, the images are considered from publicly available datasets. Significant biomarkers representing critical image features are extracted from CNN by experimentally investigating on cross-validation methods and hyperparameter settings. The performance of the network is evaluated using standard metrics. Perturbation based occlusion sensitivity maps are employed on the features obtained from the classification model to visualise the localization of abnormal areas. Results demonstrate that the simplified CNN model with optimised parameters is able to extract significant features with a sensitivity of 97.35% and F-measure of 96.71% to detect COVID-19 images. The algorithm achieves an Area Under the Curve-Receiver Operating Characteristic score of 99.4% with Matthews correlation coefficient of 0.93. High value of Diagnostic odds ratio is also obtained. Occlusion sensitivity maps provide precise localization of abnormal regions by identifying COVID-19 conditions. As early detection through chest radiographic images are useful for automated screening of the disease, this method appears to be clinically relevant in providing a visual diagnostic solution using a simplified and efficient model.

  相似文献   

18.
Applied Intelligence - Computer-aided diagnosis (CAD) methods such as Chest X-rays (CXR)-based method is one of the cheapest alternative options to diagnose the early stage of COVID-19 disease...  相似文献   

19.
Peng  Yong  Liu  Enbin  Peng  Shanbi  Chen  Qikun  Li  Dangjian  Lian  Dianpeng 《Artificial Intelligence Review》2022,55(6):4941-4977

In late December 2019, a new type of coronavirus was discovered, which was later named severe acute respiratory syndrome coronavirus 2(SARS-CoV-2). Since its discovery, the virus has spread globally, with 2,975,875 deaths as of 15 April 2021, and has had a huge impact on our health systems and economy. How to suppress the continued spread of new coronary pneumonia is the main task of many scientists and researchers. The introduction of artificial intelligence technology has provided a huge contribution to the suppression of the new coronavirus. This article discusses the main application of artificial intelligence technology in the suppression of coronavirus from three major aspects of identification, prediction, and development through a large amount of literature research, and puts forward the current main challenges and possible development directions. The results show that it is an effective measure to combine artificial intelligence technology with a variety of new technologies to predict and identify COVID-19 patients.

  相似文献   

20.
Applied Intelligence - Figure 4 in the original article unfortunately contained an error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号