首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guefrechi  Sarra  Jabra  Marwa Ben  Ammar  Adel  Koubaa  Anis  Hamam  Habib 《Multimedia Tools and Applications》2021,80(21-23):31803-31820

The whole world is facing a health crisis, that is unique in its kind, due to the COVID-19 pandemic. As the coronavirus continues spreading, researchers are concerned by providing or help provide solutions to save lives and to stop the pandemic outbreak. Among others, artificial intelligence (AI) has been adapted to address the challenges caused by pandemic. In this article, we design a deep learning system to extract features and detect COVID-19 from chest X-ray images. Three powerful networks, namely ResNet50, InceptionV3, and VGG16, have been fine-tuned on an enhanced dataset, which was constructed by collecting COVID-19 and normal chest X-ray images from different public databases. We applied data augmentation techniques to artificially generate a large number of chest X-ray images: Random Rotation with an angle between ??10 and 10 degrees, random noise, and horizontal flips. Experimental results are encouraging: the proposed models reached an accuracy of 97.20?% for Resnet50, 98.10?% for InceptionV3, and 98.30?% for VGG16 in classifying chest X-ray images as Normal or COVID-19. The results show that transfer learning is proven to be effective, showing strong performance and easy-to-deploy COVID-19 detection methods. This enables automatizing the process of analyzing X-ray images with high accuracy and it can also be used in cases where the materials and RT-PCR tests are limited.

  相似文献   

2.
Severe Coronavirus Disease 2019 (COVID-19) has been a global pandemic which provokes massive devastation to the society, economy, and culture since January 2020. The pandemic demonstrates the inefficiency of superannuated manual detection approaches and inspires novel approaches that detect COVID-19 by classifying chest x-ray (CXR) images with deep learning technology. Although a wide range of researches about bran-new COVID-19 detection methods that classify CXR images with centralized convolutional neural network (CNN) models have been proposed, the latency, privacy, and cost of information transmission between the data resources and the centralized data center will make the detection inefficient. Hence, in this article, a COVID-19 detection scheme via CXR images classification with a lightweight CNN model called MobileNet in edge computing is proposed to alleviate the computing pressure of centralized data center and ameliorate detection efficiency. Specifically, the general framework is introduced first to manifest the overall arrangement of the computing and information services ecosystem. Then, an unsupervised model DCGAN is employed to make up for the small scale of data set. Moreover, the implementation of the MobileNet for CXR images classification is presented at great length. The specific distribution strategy of MobileNet models is followed. The extensive evaluations of the experiments demonstrate the efficiency and accuracy of the proposed scheme for detecting COVID-19 over CXR images in edge computing.  相似文献   

3.
Multimedia Tools and Applications - Since early 2020, Coronavirus Disease 2019 (COVID-19) has spread widely around the world. COVID-19 infects the lungs, leading to breathing difficulties. Early...  相似文献   

4.
5.
COVID-19 is a novel coronavirus-induced disease and automatic identification of COVID-19 using computer-assisted methods can facilitate faster diagnostic efficiency. Current research typically employs a single model for COVID-19 identification, while implicit and complementary knowledge between heterogeneous networks is neglected. To address these issues, we propose a new model based on deep mutual learning with online feature alignment called DML-OFA to more effectively diagnose COVID-19. First, we use a traditional deep mutual learning (DML) framework to allow two parallel heterogeneous networks to learn from each other to form two effective feature extractors. In addition, we embed the adaptive feature fusion classifier and logits ensembling module in the proposed DML-OFA, which can simultaneously learn implicit complementary knowledge from feature maps and logits. We evaluated DML-OFA on four public datasets: Covid-chestxray-dataset, ChestXRay2017, Coronavirus-dataset and COVIDx. The results showed that our model attains 97.10 Accuracy, 97.28 Specificity, 96.21 Recall, 97.45 Precision, and 96.82 F1-score, which outperforms other previous related works.  相似文献   

6.
The COVID-19 virus has fatal effect on lung function and due to its rapidity the early detection is necessary at the moment. The radiographic images have already been used by the researchers for the early diagnosis of COVID-19. Though several existing research exhibited very good performance with either x-ray or computer tomography (CT) images, to the best of our knowledge no such work has reported the assembled performance of both x-ray and CT images. Thus increase in accuracy with higher scalability is the main concern of the recent research. In this article, an integrated deep learning model has been developed for detection of COVID-19 at an early stage using both chest x-ray and CT images. The lack of publicly available data about COVID-19 disease motivates the authors to combine three benchmark datasets into a single dataset of large size. The proposed model has applied various transfer learning techniques for feature extraction and to find out the best suite. Finally the capsule network is used to categorize the sub-dataset into COVID positive and normal patients. The experimental results show that, the best performance exhibits by the ResNet50 with capsule network as an extractor-classifier pair with the combined dataset, which is composed of 575 numbers of x-ray images and 930 numbers of CT images. The proposed model achieves accuracy of 98.2% and 97.8% with x-ray and CT images, respectively, and an average of 98%.  相似文献   

7.
8.
Neural Computing and Applications - In late 2019, a new Coronavirus disease (COVID-19) appeared in Wuhan, Hubei Province, China. The virus began to spread throughout many countries, affecting a...  相似文献   

9.
Pattern Analysis and Applications - COVID-19 continues to have catastrophic effects on the lives of human beings throughout the world. To combat this disease it is necessary to screen the affected...  相似文献   

10.

The coronavirus COVID-19 pandemic is today’s major public health crisis, we have faced since the Second World War. The pandemic is spreading around the globe like a wave, and according to the World Health Organization’s recent report, the number of confirmed cases and deaths are rising rapidly. COVID-19 pandemic has created severe social, economic, and political crises, which in turn will leave long-lasting scars. One of the countermeasures against controlling coronavirus outbreak is specific, accurate, reliable, and rapid detection technique to identify infected patients. The availability and affordability of RT-PCR kits remains a major bottleneck in many countries, while handling COVID-19 outbreak effectively. Recent findings indicate that chest radiography anomalies can characterize patients with COVID-19 infection. In this study, Corona-Nidaan, a lightweight deep convolutional neural network (DCNN), is proposed to detect COVID-19, Pneumonia, and Normal cases from chest X-ray image analysis; without any human intervention. We introduce a simple minority class oversampling method for dealing with imbalanced dataset problem. The impact of transfer learning with pre-trained CNNs on chest X-ray based COVID-19 infection detection is also investigated. Experimental analysis shows that Corona-Nidaan model outperforms prior works and other pre-trained CNN based models. The model achieved 95% accuracy for three-class classification with 94% precision and recall for COVID-19 cases. While studying the performance of various pre-trained models, it is also found that VGG19 outperforms other pre-trained CNN models by achieving 93% accuracy with 87% recall and 93% precision for COVID-19 infection detection. The model is evaluated by screening the COVID-19 infected Indian Patient chest X-ray dataset with good accuracy.

  相似文献   

11.
In this paper, we compare and evaluate different testing protocols used for automatic COVID-19 diagnosis from X-Ray images in the recent literature. We show that similar results can be obtained using X-Ray images that do not contain most of the lungs. We are able to remove the lungs from the images by turning to black the center of the X-Ray scan and training our classifiers only on the outer part of the images. Hence, we deduce that several testing protocols for the recognition are not fair and that the neural networks are learning patterns in the dataset that are not correlated to the presence of COVID-19. Finally, we show that creating a fair testing protocol is a challenging task, and we provide a method to measure how fair a specific testing protocol is. In the future research we suggest to check the fairness of a testing protocol using our tools and we encourage researchers to look for better techniques than the ones that we propose.  相似文献   

12.
Neural Computing and Applications - COVID-19 has emerged as a global crisis with unprecedented socio-economic challenges, jeopardizing our lives and livelihoods for years to come. The...  相似文献   

13.
通过EasyDL平台搭建基于CT影像的新冠肺炎检测系统,利用人工智能在图像识别上能够自动学习图像特征及区分图像特征之间差异的特点,来检测病人是否患有新冠肺炎.实验结果显示,新冠肺炎识别精确度为100.00%,感染性肺疾病识别精确度为98.06%,非感染性肺疾病识别精确度为93.64%,正常肺部识别精确度为98.03%....  相似文献   

14.

The 2019 novel coronavirus disease (COVID-19), with a starting point in China, has spread rapidly among people living in other countries and is approaching approximately 101,917,147 cases worldwide according to the statistics of World Health Organization. There are a limited number of COVID-19 test kits available in hospitals due to the increasing cases daily. Therefore, it is necessary to implement an automatic detection system as a quick alternative diagnosis option to prevent COVID-19 spreading among people. In this study, five pre-trained convolutional neural network-based models (ResNet50, ResNet101, ResNet152, InceptionV3 and Inception-ResNetV2) have been proposed for the detection of coronavirus pneumonia-infected patient using chest X-ray radiographs. We have implemented three different binary classifications with four classes (COVID-19, normal (healthy), viral pneumonia and bacterial pneumonia) by using five-fold cross-validation. Considering the performance results obtained, it has been seen that the pre-trained ResNet50 model provides the highest classification performance (96.1% accuracy for Dataset-1, 99.5% accuracy for Dataset-2 and 99.7% accuracy for Dataset-3) among other four used models.

  相似文献   

15.
Applied Intelligence - This 21st century is notable for experiencing so many disturbances at economic, social, cultural, and political levels in the entire world. The outbreak of novel corona virus...  相似文献   

16.
Multimedia Tools and Applications - Coronavirus-caused diseases are common worldwide and might worsen both human health and the world economy. Most people may instantly encounter coronavirus in...  相似文献   

17.
Multimedia Tools and Applications - The COVID-19 pandemic has affected all the countries in the world with its droplet spread mode. The colossal amount of cases has strained all the healthcare...  相似文献   

18.
Li  Daqiu  Fu  Zhangjie  Xu  Jun 《Applied Intelligence》2021,51(5):2805-2817

With the outbreak of COVID-19, medical imaging such as computed tomography (CT) based diagnosis is proved to be an effective way to fight against the rapid spread of the virus. Therefore, it is important to study computerized models for infectious detection based on CT imaging. New deep learning-based approaches are developed for CT assisted diagnosis of COVID-19. However, most of the current studies are based on a small size dataset of COVID-19 CT images as there are less publicly available datasets for patient privacy reasons. As a result, the performance of deep learning-based detection models needs to be improved based on a small size dataset. In this paper, a stacked autoencoder detector model is proposed to greatly improve the performance of the detection models such as precision rate and recall rate. Firstly, four autoencoders are constructed as the first four layers of the whole stacked autoencoder detector model being developed to extract better features of CT images. Secondly, the four autoencoders are cascaded together and connected to the dense layer and the softmax classifier to constitute the model. Finally, a new classification loss function is constructed by superimposing reconstruction loss to enhance the detection accuracy of the model. The experiment results show that our model is performed well on a small size COVID-2019 CT image dataset. Our model achieves the average accuracy, precision, recall, and F1-score rate of 94.7%, 96.54%, 94.1%, and 94.8%, respectively. The results reflect the ability of our model in discriminating COVID-19 images which might help radiologists in the diagnosis of suspected COVID-19 patients.

  相似文献   

19.
Coronavirus disease (COVID-19) is a pandemic that has caused thousands of casualties and impacts all over the world. Most countries are facing a shortage of COVID-19 test kits in hospitals due to the daily increase in the number of cases. Early detection of COVID-19 can protect people from severe infection. Unfortunately, COVID-19 can be misdiagnosed as pneumonia or other illness and can lead to patient death. Therefore, in order to avoid the spread of COVID-19 among the population, it is necessary to implement an automated early diagnostic system as a rapid alternative diagnostic system. Several researchers have done very well in detecting COVID-19; however, most of them have lower accuracy and overfitting issues that make early screening of COVID-19 difficult. Transfer learning is the most successful technique to solve this problem with higher accuracy. In this paper, we studied the feasibility of applying transfer learning and added our own classifier to automatically classify COVID-19 because transfer learning is very suitable for medical imaging due to the limited availability of data. In this work, we proposed a CNN model based on deep transfer learning technique using six different pre-trained architectures, including VGG16, DenseNet201, MobileNetV2, ResNet50, Xception, and EfficientNetB0. A total of 3886 chest X-rays (1200 cases of COVID-19, 1341 healthy and 1345 cases of viral pneumonia) were used to study the effectiveness of the proposed CNN model. A comparative analysis of the proposed CNN models using three classes of chest X-ray datasets was carried out in order to find the most suitable model. Experimental results show that the proposed CNN model based on VGG16 was able to accurately diagnose COVID-19 patients with 97.84% accuracy, 97.90% precision, 97.89% sensitivity, and 97.89% of F1-score. Evaluation of the test data shows that the proposed model produces the highest accuracy among CNNs and seems to be the most suitable choice for COVID-19 classification. We believe that in this pandemic situation, this model will support healthcare professionals in improving patient screening.  相似文献   

20.
Artificial Intelligence Review - Since early 2020, the whole world has been facing the deadly and highly contagious disease named coronavirus disease (COVID-19) and the World Health Organization...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号