首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
纤维增强复合材料在体育器材上的应用   总被引:1,自引:1,他引:0  
介绍纤维增强复合材料在体育器材领域的应用。主要从纤维增强复合材料应用在体育器材方面的优势,以及选材原则、产品品种、应用实例及现状等方面进行了阐述。  相似文献   

2.
对纤维增强复合材料在桥梁工程中的应用进行了综述、分析与总结。指出复合材料在桥梁结构中应用的主要结构连接形式有胶接连接和机械连接,纤维增强复合材料在桥梁结构中的应用主要有两个方面:一方面是采用复合材料加固修理危旧桥梁,另一方面是在桥梁的局部使用复合材料结构以达到减重的效果。同时还列举了大量关于复合材料在桥梁工程应用的实例,旨在为以后桥梁设计者提供参考。  相似文献   

3.
先进热塑性树脂基复合材料在航天航空上的应用   总被引:2,自引:0,他引:2  
本文介绍了纤维增强热塑性复合材料的特点及主要的成型工艺,并说明了其在航空航天上的应用,如军用飞机和民用飞机上的应用情况,最后总结了未来纤维增强热塑性复合材料的发展方向。  相似文献   

4.
在土建结构加固领域,相比传统的粘钢加固法、扩大截面法或体外预应力法等,纤维增强复合材料(FRP)加固法凭借施工简便、不破坏原结构、高度抗疲劳性以及耐久性好等应用优势,具备更好的实际适用性。为进一步促进纤维增强复合材料在土建结构加固工程中的深入发展与应用,基于纤维增强复合材料的概念与应用特点,从混凝土构件补强、损伤钢结构修复以及桥梁结构加固等方面,总结介绍了目前纤维增强复合材料的主要应用情况。针对目前FRP材料研究的不足和短板,探讨了未来纤维增强复合材料的发展方向,指出还需要在特殊结构加固适用性、黏结胶性能优化、黏结面破坏特性以及不同环境下的加固工艺等方面开展深入研究,以进一步拓宽FRP材料的应用场景。  相似文献   

5.
蔗渣纤维具有资源丰富、价格低廉、高比强度和可降解等优良特性,作为复合材料的增强体,具有显著的经济优势和广泛的应用前景。文章对蔗渣纤维表面的改性进展进行了综述,分别介绍了蔗渣纤维主要的几种物理改性方法和化学改性方法,并阐述了改性蔗渣纤维增强热塑性复合材料的应用现状。  相似文献   

6.
本文介绍了纤维增强树脂基复合材料相关特征和直升机常用纤维增强树脂基复合材料的种类特性.描述了直升机结构特点以及纤维增强树脂基复合材料在直升机上的具体应用部位和应用现状,并对实际应用部位的结构特点、选材情况和其在直升机上的作用用途等进行了论述,同时对直升机用复合材料未来的发展趋势进行了展望.研究表明,纤维增强树脂基复合材...  相似文献   

7.
高性能热塑性树脂基复合材料的研究进展   总被引:11,自引:3,他引:11  
近些年来,纤维增强热塑性树脂基复合材料已逐步发展成为复合材料中一个高性能、低成本的新型材料家族。本文主要介绍了各种高性能工程塑料和增强纤维的发展,连续纤维增强热塑性树脂的浸渍工艺及成型工艺,最后还介绍了热塑性纤维复合材料的发展趋势。  相似文献   

8.
刘晶芝  刘锋  马郡  蒋晓斌 《塑料助剂》2023,(6):54-57+61
体育器材与设施的发展与高性能复合材料有着密切的联系,纤维增强复合(FRP)材料以其质量轻、强度高、耐磨、减震等性能优势,在体育运动器材与防护设施中被广泛应用。基于此,文章阐述了体育领域常用的5种FRP,包括CFRP、AFRP、GFRP、UHMWPE增强复合材料和PBO纤维增强复合材料,详细分析了每种材料具备的性能优势;探究了纤维增强复合材料在运动健身器材和防护设施中的具体应用;并对该材料在体育领域中的应用趋势和前景进行展望,以期促进纤维增强复合材料的功能化发展和在体育用品中的广泛应用。  相似文献   

9.
超高分子量聚乙烯纤维复合材料的研究进展   总被引:5,自引:0,他引:5  
概述超高分子量聚乙烯(UHMWPE)纤维增强复合材料的研究进展,详细介绍了UHMWPE纤维的各种优良特性和UHMWPE纤维增强复合材料用基体树脂,以及UHMWPE纤维增强复合材料的制备方法与工艺,对UHMWPE增强复合材料的应用及其应用领域进行了汇总。  相似文献   

10.
聚合物/碳纳米管复合材料的研究现状及在纤维中的应用   总被引:7,自引:0,他引:7  
对聚合物/碳纳米管复合材料的制备和性能研究现状及碳纳米管对聚合物的增强机理作了综述,并介绍了此纳米复合材料在复合纤维制备中的应用。  相似文献   

11.
胡宏玖  刘红 《化工机械》2001,28(2):87-89
介绍了纤维增强弹性体膨胀节的性能特点与主要应用场合 ,探讨了其中纤维增强弹性体复合材料的选用、连接结构以及补偿量的工程设计方法。  相似文献   

12.
简要介绍了稻壳、椰壳、核桃壳、花生壳等植物壳纤维利用现状及其主要组成成分,阐述了稻壳、椰壳、核桃壳、花生壳等植物壳纤维增强塑料基复合材料的研究进展。针对植物壳纤维增强塑料基复合材料的发展现状,提出了植物壳纤维替代木粉、竹纤维等传统增强纤维制备木塑复合材料和大力发展新型植物壳纤维增强塑料基复合材料的发展方向,并展望了植物壳纤维增强塑料基复合材料的应用前景。  相似文献   

13.
张纪刚  杨冉 《硅酸盐通报》2020,39(11):3393-3398
纤维增强混凝土(FRC)作为新型复合材料,在一些方面具有比传统混凝土更优异的力学性能,文章综述了纤维增强混凝土(重点是钢纤维增强混凝土)及其构件抗冲击和抗爆相关的试验研究,介绍了纤维增强混凝土及其构件在冲击和爆炸荷载下的动力学行为,总结了国内外一些学者和专家进行各类纤维增强混凝土材料动力学行为试验所开展的研究方法,为之后各界开展纤维增强混凝土及构件的动力学试验提供部分帮助,促进纤维增强混凝土等复合材料领域动力学试验开展和性能研究,加快新型复合材料在土木工程中的进一步发展和应用.  相似文献   

14.
纤维增强复合材料的力学性能主要受到纤维性能、树脂性能以及纤维与树脂间的复合材料界面性能影响。在实际应用中,纤维表面改性是增强纤维和基体之间结合力,拓展应用领域的关键。本文综述了国内外玄武岩纤维的几种改性工艺,总结了各种表面改性方法的作用机理及其改性效果,并简要介绍了玄武岩纤维的性质及应用。研究发现,玄武岩纤维经过改性后,其性能均有所改善,如表面活性提高、强度增大、界面黏结力增强等,这有利于其作为增强体制备各种性能优异的复合材料,从而应用于土木建筑、汽车船舶、石油化工、航空航天等领域。此外,本文最后还指出了玄武岩纤维改性领域目前存在的主要问题,并对未来该领域研究发展方向做出展望。  相似文献   

15.
连续纤维增强热塑性树脂基复合材料   总被引:6,自引:1,他引:6  
近几年以来,连续纤维增强热塑性树脂基复合材料已逐步发展成为复合材料中一个高性能、低成本的新型材料家族.由于连续纤维增强热塑性树脂基复合材料具有优良的力学性能,良好的抗环境性,耐化学腐蚀性,低成本,简单的成型工艺以及可回收加工性等,从80年代中期开始,在世界范围内得以广泛的研究和应用,本文将主要介绍连续纤维增强热塑性树脂基复合材料的优良性能,生产成型中所需热塑性树脂、增强纤维的特性,以及主要的生产工艺方法。  相似文献   

16.
贾明皓  肖学良  钱坤 《硅酸盐通报》2018,37(11):3467-3474
玄武岩纤维是一种新型无机绿色环保高性能纤维材料.综述了玄武岩纤维及其玄武岩纤维增强水泥基复合材料(basalt fiber reinforced cement-based composite)国内外最新研究进展,简要介绍了玄武岩纤维国内外研究进展,玄武岩纤维表面处理技术对界面性能的影响以及对提高复合材料整体性能的必要性,并重点介绍了玄武岩纤维增强水泥基复合材料力学性能研究和纤维增强机理以及玄武岩纤维水工混凝土及BFRP加固应用.最后对玄武岩纤维增强水泥基复合材料的发展研究方向进行了展望.  相似文献   

17.
先进复合材料用高性能纤维发展概述   总被引:10,自引:0,他引:10  
马晓光  刘越 《合成纤维》2001,30(2):21-25
作为材料科学的一个重要分支,纤维增强复合材料以其优异的性能取得了飞速发展并且在社会各领域得到了越来越广泛的应用。在先进复合材料中,目前最常应用的高性能增强纤维有碳纤维、芳香族聚酰胺纤维以及超高分子量聚乙烯纤维等。本文即对这些纤维的发展及其在先进复合材料中的应用情况作一概述。  相似文献   

18.
本文介绍了介电分析法在热固性树脂及以其为基体的涂料和纤维增强复合材料固化研究中的应用。  相似文献   

19.
聚对苯撑苯并二恶唑(PBO)纤维表面化学惰性较强,应用方面受到了较大的限制。PBO纤维经表面改性后可与其它化合物形成复合材料,如PBO树脂基增强复合材料以及PBO纤维纳米复合材料等,PBO纤维复合材料凭借优异的力学及化学性能在各领域都获得了较大的应用及发展。介绍了PBO树脂基增强复合材料和PBO纤维纳米复合材料的应用及发展。近些年,PBO纤维复合材料已经逐步取代传统的金属材料。但是目前PBO纤维复合材料仍有较大的研究空间,其开发对于航空、航天和国防等高新技术领域材料及产品更新换代具有重要意义。  相似文献   

20.
热塑性导电塑料在屏蔽电磁波干扰中的应用   总被引:6,自引:0,他引:6  
介绍了复合型导电塑料,特别是导电纤维增强热塑性塑料在屏蔽电磁波干扰中的应用现状和技术发展趋势,讨论了3种主要的导电纤维即碳纤维,镀镍碳纤维和不锈钢纤维的优缺点;比较了不同的加工设备和加工方法对这类导电复合材料性能的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号