共查询到20条相似文献,搜索用时 9 毫秒
1.
针对现有基于神经网络的网络安全态势评估方法效率低等问题,提出基于布谷鸟搜索(CS)优化反向传播(BP)神经网络(CSBPNN)的网络安全态势评估方法。首先,根据态势输入指标数和输出态势值确定BP神经网络(BPNN)的输入输出节点数,根据经验公式和试凑法计算出隐含层节点数;然后,随机初始化各层的连接权值和阈值,使用浮点数编码方式将权值与阈值编码成布谷鸟;最后,使用CS算法对权值和阈值进行优化,得到用于态势评估的CSBPNN模型并对其进行训练,将网络安全态势数据输入到CSBPNN模型中,获取网络的安全态势值。实验结果表明,与BPNN和遗传算法优化BP神经网络方法相比,基于CSBPNN的网络安全态势评估方法的迭代代数分别减少943和47且预测精度提高8.06个百分点和3.89个百分点,所提方法具有较快的收敛速度和较高的预测精度。 相似文献
2.
基于鲸鱼算法优化LSSVM的滚动轴承故障诊断 总被引:1,自引:0,他引:1
针对轴承振动信号中的故障特征难以提取的问题,提出一种基于改进的鲸鱼算法优化最小二乘支持向量机(least square support vector machine, LSSVM)的故障分类方法.首先,利用变分模态分解(variational mode decomposition, VMD)对原始信号进行分解,使用中心频率法解决VMD中分解参数K值的选取问题;其次,计算每个IMF分量的多尺度排列熵值,提取信号故障特征;再次,针对鲸鱼算法(whale optimization algorithm, WOA)收敛速度慢和精度低的问题,引入冯诺依曼拓扑结构和自适应权重进行改进,可以适当地调整全局搜索能力和局部搜索能力之间的平衡;最后,采用改进后的鲸鱼算法优化LSSVM核函数的参数和惩罚因子,建立滚动轴承故障诊断模型,并利用美国凯斯西储大学提供的轴承数据集进行仿真实验.实验结果表明,所提方法的故障分类性能更好,准确率更高. 相似文献
3.
针对无线网络流量数据预测精度不高问题,提出一种基于蝙蝠算法(BA)优化的反向传播(BP)神经网络的分类预测模型——BABP.通过采用蝙蝠算法对BP神经网络模型的初始权值与阈值进行全局寻优,构建崭新的基于蝙蝠算法优化的神经网络模型.通过与基于传统寻优算法遗传算法(GA)与粒子群优化(PSO)算法的反向传播(BP)神经网络模型比较,在无线网络流量数据的分类预测和稳定性方面,提出的BABP模型要优于GABP模型、PSOBP模型;同时,无论迭代次数的多与少,BABP均比GABP、PSOBP算法更快地收敛.实验结果表明,BABP模型在预测精度、寻优速度以及模型稳定性等方面均比GABP、PSOBP模型更具优势. 相似文献
4.
针对流线型AUV舵故障,提出了基于Elman神经网络的故障诊断方法。基于蚁群算法优化改进型Elman神经网络,建立了AUV角速度运动模型,通过蚁群算法和梯度下降法对改进型Elman神经网络训练的对比分析,验证了蚁群算法优化的改进型Elman神经网络具有训练速度快,不易陷入最优解等特点。提出了基于角速度残差检测舵故障,再通过定角度航行和定速直航的主动诊断方式,判定舵故障类型的故障诊断方法,探讨了基于角速度残差和角度残差的变化趋势来诊断舵卡死和舵变形故障的故障决策方法。对流线型AUV的舵变形及舵卡死故障进行了水池模拟实验,实验结果验证了所提方法的有效性。 相似文献
5.
滚动轴承的故障诊断对于提高工业生产效率,保障工业生产的稳定安全地运行具有重要意义。为了提高滚动轴承故障识别的正确率,提出一种使用KNN-朴素贝叶斯决策组合算法对滚动轴承故障诊断。组合算法利用朴素贝叶斯算法对使用不同K值的KNN算法初步分类结果进行再分类以达到提高滚动轴承故障识别的目的。首先,使用小波包能量法对滚动轴承振动信号进行能量特征提取,然后使用多个参数K值不同的KNN算法对能量特征数据预分类,得到多个KNN算法分类结果集,将分类结果集进行处理得到预分类结果集,将预分类结果集作为朴素贝叶斯算法的输入,使用朴素贝叶斯算法对数据再分类。实验结果表明,组合算法相较于传统KNN算法及贝叶斯算法在滚动轴承的故障诊断率得到了有效提高,实现了对滚动轴承故障的有效诊断。 相似文献
6.
布谷鸟搜索算法优化BP神经网络的网络流量预测 总被引:1,自引:0,他引:1
为了提高预测精度,提出一种布谷鸟搜索算法优化BP神经网络的网络流量预测模型(Cuckoo Search BP neural network Flow Prediction,CS-BPNN)。根据混沌理论建立网络流量学习样本,采用BP神经网络对学习样本进行训练,将模型参数当一个鸟巢,通过模拟布谷鸟寻窝产卵的行为找到最优模型参数,最后采用网络流量数据进行仿真实验,测试模型性能。仿真实验表明:所提出模型较好的解决了BP神经参数优化问题,能够获得更加理想的网络流量预测结果。 相似文献
7.
滚动轴承作为风电机组的关键部件,对于整个机组的安全运行起着决定性作用.针对机组滚动轴承故障诊断问题,提出一种节点优化型有向无环图大间隔分布机(O-DAG-LDM)的故障诊断方法.结合DAG多分类扩展性能与LDM二分类器泛化性能的优点,构建一种面向滚动轴承故障诊断的DAG结构扩展式LDM多分类器方法.在DAG-LDM算法框架下,利用优化算法对DAG节点进行优化排列以减小随机排布引起的累积误差,提高LDM故障分类准确率.实验表明,与其他主流智能诊断方法相比,所提出的节点优化型DAG-LDM故障诊断方法具有较高的准确率和更好的抗噪性能. 相似文献
8.
高述涛 《计算机工程与应用》2013,49(9):106-109
为了提高短时交通流量的预测精度,提出一种布谷鸟搜索算法优化BP神经网络参数的短时交通流量预测模型(CS-BPNN)。基于混沌理论对短时交通流量时间序列进行相空间重构,将重构后的时间序列输入到BP神经网络进行学习,采用布谷鸟搜索算法找到BP神经网络最优参数,建立短时交通流量预测模型,通过具体实例对CS-BPNN性能进行测试。仿真结果表明,相对于对比模型,CS-BPNN提高了短时交通流量的预测精度,更加准确反映了短时交通流量的变化趋势。 相似文献
9.
基于BP神经网络的水牛疾病诊断系统 总被引:1,自引:0,他引:1
针对传统专家系统获取知识困难自学习能力差和推理能力弱等缺点,设计并实现了基于BP神经网络的水牛疾病诊断专家系统.系统用专家以往诊断水牛疾病的病历来训练神经网络,并通过训练过的神经网络来实现疾病的诊断,然后针对诊断结果进行反向推理以确诊水牛疾病,结果表明,该系统很好地改进了传统专家系统存在的一些缺点.另外,该水牛疾病诊断系统的实现方法可推广应用到其它动物的疾病诊断系统中,为疾病诊断系统的开发提供了一条有效的新途径. 相似文献
10.
Fault size diagnosis of rolling element bearing using artificial neural network and dimension theory
Kumbhar Surajkumar G. Desavale R. G. Dharwadkar Nagaraj V. 《Neural computing & applications》2021,33(23):16079-16093
Neural Computing and Applications - Failure of roller bearings can cause downtime or a complete shutdown of rotating machines. Therefore, a well-timed detection of bearing defects must be... 相似文献
11.
增益修改的卡尔曼滤波(MGEKF)算法在实际应用时,一般使用带有误差的测量值代替真实值进行增益修正计算,导致修正结果也被误差污染。针对这一问题,提出一种基于反向传播神经网络(BPNN)改进的MGEKF算法,该算法使用训练后的神经网络代替MGEKF的增益修正函数。该算法在网络训练阶段,以实际测量值作为神经网络的输入,真实值修正后的结果作为训练目标;在实际应用中,使用网络的输出修正卡尔曼增益。针对移动单站只测向目标定位问题进行了实验,实验结果表明:该算法与扩展卡尔曼滤波(EKF)、MGEKF、平滑增益修改的卡尔曼滤波(sMGEKF)算法相比:定位精度至少提升10%,并且有更强的稳定性。 相似文献
12.
邹建 《网络与信息安全学报》2017,3(9):55-60
针对人体行为识别问题,提出一种基于径向基函数(BP)神经网络的人体行为分类算法。首先,利用奇异值分解(SVD)算法提取视频每一帧的奇异值,将每一帧的奇异值按照行拼接起来即为一个视频的样本,样本按照行排成样本矩阵;然后,利用主成分分析(PCA)对得到的矩阵进行去相关并且降低维数,降低维数的矩阵再进行线性鉴别分析(LDA),使样本变得线性可分;最后,利用BP神经网络对样本进行分类;实验结果表明,与采用最近邻分类和K近邻分类(kNN)相比,所提算法具有更高的识别率。 相似文献
13.
14.
近年来,许多基于深度学习的方法被用于故障诊断领域,并且取得了良好的效果,但是发电机故障样本数据难以获取,在数据量较少的情况下,基于深度学习的方法存在过拟合现象,导致模型泛化能力差、诊断精度不高.为了解决这一问题,提出一种基于随机变分推理贝叶斯神经网络的故障诊断方法.该方法以贝叶斯推理与随机变分推理为基础,可以根据少量数据得到较为可靠的模型,获得网络各层参数的概率分布,有效解决过拟合的问题.采用证据下限(evidence lower bound, ELBO)派生类函数TraceGraph ELBO进行随机变分推理,解决派生类函数Trace ELBO诊断精度较低的问题.将所提方法应用于发电机轴承的故障诊断,并与其他方法对比,结果表明,所提方法在故障样本数据量较少的情况下具有较高的诊断性能. 相似文献
15.
In this work, a new classification method called Soft Competitive Learning Fuzzy Adaptive Resonance Theory (SFART) is proposed to diagnose bearing faults. In order to solve the misclassification caused by the traditional Fuzzy ART based on hard competitive learning, a soft competitive learning ART model is established using Yu’s norm similarity criterion and lateral inhibition theory. The proposed SFART is based on Yu’s norm similarity criterion and soft competitive learning mechanism. In SFART, Yu’s similarity criterion and the lateral inhibition theory were employed to measure the proximity and select winning neurons, respectively. To further improve the classification accuracy, a feature selection technique based on Yu’s norms is also proposed. In addition, Particle Swarm Optimization (PSO) is introduced to optimize the model parameters of SFART. Meanwhile, the validity of the feature selection technique and parameter optimization method is demonstrated. Finally, fuzzy ART/ ARTMAP (FAM) as well as the feasibility of the proposed SFART algorithm are validated by comparing the diagnosis effectiveness of the proposed algorithm with the classic Fuzzy c-means (FCM), Fuzzy ART and fuzzy ARTMAP (FAM). 相似文献
16.
17.
针对现有的软件可靠性增长模型(SRGM)适用性较差、预测精度波动大的问题,使用自适应步长布谷鸟搜查(ASCS)算法对模糊神经网络(FNN)的权重和阈值进行寻优,利用得到了最优权重和阈值的FNN建立SRGM。在使用缺陷数据对FNN训练的过程中,利用ASCS来调整FNN的权重和阈值,以此提高在预测过程中的精度,同时采用多次预测结果取均值的方式来减小FNN预测的波动性,以此建立基于结合自适应步长布谷鸟搜查算法的模糊神经网络(ASCS-FNN)的软件可靠性增长模型。利用3组软件缺陷数据,以误差比均值和误差平方和作为衡量标准,对基于ASCS-FNN、结合模拟退火算法的动态模糊神经网络(SA-DFNN)、FNN、BP网络(BPN)建立的SRGM的一步向前预测能力进行比较。预测结果表明,在四组模型中,基于ASCS-FNN建立的SRGM相对于SA-DFNN、FNN、BPN建立的SRGM的平均预测精度相对提高率RI(AE)和RI(SSE)分别为-1.48%、54.8%、33.8%和14.4%、76%、35.9%,并且该模型比FNN、BPN建立的SRGM在相同缺陷数据下的预测波动性小,而且网络结构比SA-DFNN的网络结构简单。因此该模型具有预测精度较高、预测稳定和具有一定的适用性等优点。 相似文献
18.
19.
针对深度信念网络(DBN)权值随机初始化易使网络陷入局部最优的问题,在传统DBN模型中引入布谷鸟搜索(CS)算法,提出一种基于CS-DBN的肺部肿瘤图像识别算法。首先,利用CS的全局寻优能力对DBN的初始权值进行优化,并在此基础上进行DBN的逐层预训练;然后,利用反向传播(BP)算法对整个网络进行微调,从而使网络权值达到最优;最后,将CS-DBN应用于肺部肿瘤图像的识别,实验从受限玻尔兹曼机(RBM)训练次数、训练批次大小、DBN隐层层数和隐层节点数四个角度将CS-DBN与传统DBN进行比较,以验证该算法的可行性和有效性。实验结果表明,CS-DBN的识别精度明显高于传统DBN,在不同RBM训练次数、训练批次大小、DBN隐层层数和隐层节点数条件下,CS-DBN较传统DBN识别率提高百分点的范围分别是1.13~4.33、2.00~3.34、1.07~3.34和1.40~3.34。CS-DBN能够在一定程度上提高肺部肿瘤的识别精度,从而提高肺部肿瘤计算机辅助诊断性能。 相似文献