首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
催化裂化汽油降烯烃技术的进展   总被引:1,自引:0,他引:1  
催化裂化工艺是我国重质油轻质化加工过程中的主要技术手段,我国成品汽油中的80%来自催化裂化,重整汽油、烷基化汽油等其他调合组分所占的比例很少,而催化裂化汽油中的烯烃含量较高,达到40%以上。通过优化催化裂化的操作条件,开发新型催化剂和助剂,改进催化裂化工艺,在保证轻质油品收率的前提下,降低FCC汽油的烯烃含量.同时尽可能保持其辛烷值,有利于实现油品的清洁化。介绍了近年来催化汽油降烯烃生产和国内外开发的相关技术,针对我国炼油生产的特点,提出了相应的建议。  相似文献   

2.
崔莉 《中外能源》2013,(12):66-70
随着加工原油质量变重变劣,且环保要求日趋严格,以及市场对优质汽、柴油需求量的增加,炼油厂需要进一步提高加氢工艺装置的加工能力和深度。催化重整装置的副产氢气可为炼油厂加氢精制、加氢改质、加氢裂化等加氢装置提供氢源。催化重整氢气收率与工艺过程类型、原料组成、催化剂类型和操作参数等有关。催化重整工艺过程类型选用连续再生式重整,氢气收率和氢气纯度均比半再生重整高。选用环烷烃含量高的催化熏整原料,有利于提高重整氢的收率,这是由于产生氢气的环烷脱氢反应发生的越多,氢气收率越高。催化重整催化剂选用高选择性、低积炭的催化剂,有利于提高重整氢收率,并可提高催化剂的选择性和寿命。改善重整过程的操作参数(如适当提高反应温度和降低反应压力等),可以提高重整氢收率,但是不推荐采用提高空速和降低氢油比的方法来提高氢气收率。此外,实践证实,从重整原料中脱除大部分c。烃(包括环烷烃、苯和己烷),有利于增加催化重整氢气净收率,同时可以提高汽油收率,增大汽油辛烷值,并降低炼油厂苯的生成。  相似文献   

3.
某炼厂汽油池烯烃含量高,为了满足国Ⅵ标准B阶段汽油质量升级要求,决定采用M-PHG技术对催化汽油加氢装置进行改造。M-PHG技术采用全馏分催化汽油预加氢-轻重馏分切割-重汽油加氢改质-选择性加氢脱硫的工艺技术路线和专有催化剂,通过优化工艺参数,烯烃加氢异构、芳构化改质,在实现深度加氢脱硫的同时,大幅降低烯烃含量,辛烷值损失尽可能降低。改造实施后,装置一次开车成功,标定数据表明,催化汽油硫含量由113.3μg/g降至6.9μg/g,烯烃体积分数由41%降至31%,辛烷值损失0.8个单位,产品指标满足全厂调合生产国Ⅵ标准B阶段汽油要求。采用M-PHG技术进行国Ⅵ汽油质量升级改造,可以实现加氢脱硫、降烯烃和保持辛烷值的多重功能,且在满足改造后新工艺技术路线要求的前提下,可尽量利旧原有流程、原有设备,减少了装置改造投资。  相似文献   

4.
我国成品汽油的主要调和组分有催化裂化(FCC)汽油、催化重整汽油、烷基化汽油、异构化汽油等,其中催化裂化汽油占我国成品汽油的80%以上,而FCC汽油具有高硫含量、高烯烃含量的特点。因此,有效控制催化汽油的硫含量,是控制成品汽油硫含量的关键。中海油惠州炼化分公司为满足全厂汽油升级至国Ⅳ、国Ⅴ标准的要求,新建一套500kt/a催化汽油加氢脱硫装置,该装置采用惠州炼化和北京海顺德钛催化剂有限公司合作开发的"全馏分催化汽油选择加氢脱硫工艺技术",即一段选择加氢+二段选择加氢脱硫工艺,简称CDOS-FRCN。该装置由镇海石化工程股份有限公司(ZPEC)负责工程设计,于2012年2月10日动工,当年12月24日一次开车成功,生产出合格产品。装置标定情况说明,催化汽油经全馏分加氢精制后,加氢精制汽油中,硫的质量分数达到12μg/g,硫醇硫质量分数达到10μg/g,汽油辛烷值(RON)损失小于1.5个单位。CDOS-FRCN技术能够有效降低汽油硫含量,减少辛烷值损失,可为炼油厂生产硫含量小于50μg/g甚至10μg/g的清洁汽油提供经济、灵活的技术解决方案。  相似文献   

5.
催化裂化轻循环油(LCO)因高芳烃、低十六烷值,性质较差,目前在我国LCO主要用于生产柴油调和组分或直接作为燃料油,无法满足油品升级和目前环保指标的要求。为了更好地适应市场变化,缓解柴油库存压力,洛阳石化采用催化柴油加氢处理-催化裂化组合工艺(LTAG)技术对柴油加氢和II套催化进行了改造。与LTAG技术投用前相比,在大幅压减催化柴油的基础上,目的产品(液化气和汽油)的产品分布和质量得到了改善,催化汽油辛烷值提高,烯烃大幅下降,芳烃含量大幅升高,满足了油品升级和环保指标的要求。此外,通过对比LCO加氢深度对催化裂化反应的影响发现:若想获得低成本、高收率、高辛烷值的汽油,必须合理控制副反原料LCO的加氢深度,即加氢必须保持高的多环芳烃饱和率以及高的单环芳烃选择性,要尽可能将多环芳烃选择性地加氢饱和为单环芳烃。  相似文献   

6.
近年来,我国汽柴油消费总量持续增长,预计到2020年,汽油消费量的增长速度要高于柴油,远期柴汽比将持续走低。国内炼厂降低柴汽比主要从两方面着手:增产汽油和减产柴油。某规划新建炼厂除采取增产航煤、增加异构化规模等常规手段外,通过新增催化柴油和直馏柴油加氢裂化装置降低柴汽比。采用柴油加氢裂化技术后,全厂柴汽比从1.41降到1.20,达到预定目标。采用直馏柴油裂化具有氢耗低、可生产航煤产品、全厂汽油池辛烷值较高等优势,该方案使本规划炼厂吨油毛利润提升39.3元,适于催化柴油芳烃含量较低且柴油池十六烷值富裕的炼厂。催化柴油裂化技术氢耗较高,达到相同柴汽比需要更高的转化率,该方案可使本规划炼厂吨油毛利润提高16.4元,但若采用适宜的催化裂化工艺,使催化柴油芳烃含量提高到80%,则催化柴油裂化方案吨油毛利润可提升48.7元,表明催化柴油裂化方案更适宜于柴油池十六烷值较低且催化柴油芳烃含量较高的炼厂。  相似文献   

7.
催化裂化装置作为石油的二次加工系统,其承担着掺炼渣油、重质油轻质化的任务。催化裂化汽油是车用汽油的主要来源,随着环保政策的不断加强,对汽车尾气排放也提出了更高的要求,因此必须提高汽油辛烷值的加工工艺。文章主要分析催化裂化装置汽油辛烷值偏低的原因,包括:原料组成、反应温度、催化剂种类等,通过提升装置系统相关工艺操作要求,在保证汽油收率的同时提升汽油的辛烷值,实现提升汽油辛烷值的目的,对石油延炼行业可持续发展有着重要的意义。  相似文献   

8.
生产低硫、低烯烃和高辛烷值的清洁汽油,是国家保持能源经济可持续发展的必然要求。由于我国原油组成中重质油比重较大,造成我国80%以上的商品汽油来源于流化催化裂化(FCC)汽油。缘于原油性质和FCC的工艺特点,决定了其产品中硫含量和烯烃含量高,商品汽油中90%以上的硫和绝大部分烯烃均来自于FCC汽油。所以,降低FCC汽油硫含量和烯烃含量是生产清洁汽油的关键。本文分析全馏分流化催化裂化汽油加氢改质前后烃类组成、碳数分布、辛烷值贡献的变化。改质前,正构烷烃含量占汽油馏分的5%~10%(体积分数)左右,异构烷烃含量占汽油馏分的30%(体积分数)左右,烯烃含量占汽油总量的30%(体积分数)以上,环烷烃主要集中在C6~C8之间,芳烃主要分布在C7~C10之间,碳数主要分布在C5~C8之间。改质后,正构烷烃、烯烃含量下降,异构烷烃和芳烃含量上升,总体辛烷值下降,高辛烷值的C5、C6烯烃损失严重。在反应体系中,增加烯烃的骨架异构化,并使其发生氢转移反应,可生成高辛烷值的异构烷烃,避免低辛烷值的正构烷烃生成,同时促进烯烃自身氢转移和烯烃与环烷烃之间氢转移反应,增产芳烃,可以提高改质后FCC汽油的辛烷值,为流化催化裂化汽油加氢改质路线的选择和工艺优化提供理论指导。  相似文献   

9.
因汽油池中的乙醇用量越来越多,为了平衡乙醇较高的RVP值,生产商必须寻找低RVP值的调和组分。持续的页岩热潮带来了充足且廉价的丁烷,同时由于致密油中含大量链烷烃,通常会使FCC汽油的辛烷值平均降低8~10个单位,这就造成了对高辛烷值汽油调和组分的需求。这些因素为烷基化运营商带来了巨大的机遇。世界已建的烷基化产能和商业技术中,液体酸(H2SO4和HF)烷基化技术一直占主导地位,因该技术有安全隐患,北美和欧洲的新建装置基本上已停止使用这种工艺技术。技术许可商已致力于开发烷基化技术的替代方案。UOP的间接烷基化工艺(InALKTM)既适用于新建装置,也适合于对现有MTBE装置改造后应用。有的炼厂对现有HF装置进行改造,再用固体酸替代HF。离子液体(ILS)在烷基化反应体系中既可作为溶剂也可作为催化剂,而且催化性能更好。Uhde公司将STAR工艺与齐聚技术整合为完整的丁烷转化为烷基化油的工艺方案。预计固体酸烷基化和离子液体烷基化技术未来的研发工作将集中于如何更长期地保持催化剂的活性和选择性,同时提高催化剂的再生能力。利用烷基化装置生产中间馏分油是最具吸引力的选择。  相似文献   

10.
张世方 《中外能源》2012,17(6):60-65
自1949年世界第一套铂催化重整装置投产以来,催化重整工艺经历了60余年的发展历程.分析国内外催化重整工艺的现状和未来发展趋势,以及重整催化剂和工艺过程的技术发展.其中,重整催化剂的技术发艘重点是改进催化剂配方,以提供更好的选择性、稳定性和持氯能力,提高液体收率并降低成率.进入21世纪以来,催化重整工艺本质上没有突出地创新和发展,连续重整工艺国产化专利技术的工业应用,以及逆流移动床连续重整工艺是一个亮点.催化重整装置面临的挑战和机遇为来自非常规原油和重(劣)质原油加工的石脑油增多,用更重的原料和更低的氢分压,提高重整汽油质量和氢气收率,并限制汽油中的苯及芳烃含量.连续重整工艺被认为是最有竞争力的原油加工工艺,大力发展芳烃等石油化工行业,加快连续重整工艺国产化,有利于我国催化重整工艺的可持续发展.  相似文献   

11.
某石化公司原油综合加工能力为13.20Mt/a,其加工装置包括15.70Mt/a常减压蒸馏、3.00Mt/a催化裂化、2.10Mt/a蜡油加氢、1.20Mt/a加氢裂化、1.40Mt/a催化重整、1.50Mt/a Szorb催化汽油吸附,以及60kt/a MTBE、600kt/a丙烷脱沥青等。2009年4月,产能为1.00Mt/a的2号重整装置一次投产成功,标志着全厂装置流程全面打通。根据设计要求,该公司汽油产能达到2.24Mt/a,其中93号汽油1.77Mt/a,97号汽油470kt/a。按照设计的汽油调合方案,催化裂化汽油和重整汽油分别占全厂汽油调合组分总量的59.93%和34.27%,MTBE等其他调合组分占5.8%。分析认为,要增产汽油,主要是增加催化汽油和重整汽油的产量。以全流程优化软件RISM测算为导向,采取优化生产操作方案、增产催化裂化原料、拓宽连续重整原料、优化全厂工艺流程、精细化操作、优化汽油调合方案、实行产品质量卡边控制等多项措施,年增产催化汽油66.6kt、重整汽油49.4kt,合计实现年增产汽油115kt。按2013年国Ⅲ标准93号汽油与0号普通柴油不含税价差870元/t计算,全年增效10005万元。  相似文献   

12.
胡云峰 《中外能源》2013,18(6):61-64
C5/C6烷烃(轻石脑油)异构化是在临氢条件下,利用含贵金属铂的强酸性催化剂发生异构化反应,将直链烷烃转化为带支链的异构体,即异构化油.异构化油不含硫、芳烃、烯烃,其辛烷值较高,RONC最高可达93,同时RONC和MONC之间只差1~2个单位,是优质的汽油调和组分,尤其适合生产国V标准的汽油.轻石脑油异构化工艺主要分为两大类,即原料一次通过型和正构烷烃循环型.我国C5/C6异构化催化剂生产和工业应用处于发展阶段,这与国产原油轻石脑油含量较少及轻石脑油普遍用做生产乙烯的原料有关.烷烃异构化在国外已是成熟的工艺过程,美国环球油品公司(UOP)和法国石油研究院(Axens)的C5/C6烷烃异构化技术处于世界领先地位.该技术已成为炼油厂调节汽油产品质量的重要手段,不仅可以生产优质汽油调和组分,还能将炼油厂低价值的轻石脑油转化为高价值的汽油产品,在充分利用资源,节能减排的同时,提高了经济效益.  相似文献   

13.
国外甲醇汽油的发展与启示   总被引:2,自引:0,他引:2  
沈燕华 《中外能源》2010,15(12):23-28
国外甲醇汽油的发展主要经历了研究开发、示范推广、衰退3个阶段。由于20世纪70年代两次石油危机,德国、瑞典、美国等先后开展了甲醇替代能源的研究。20世纪80年代,在改善大气环境质量的推动下,甲醇被列为清洁燃料,得到了进一步的示范推广。但20世纪80年代末以后,在欧洲甲醇汽油逐步被乙醇汽油取代。1998年后,美国甲醇燃料汽车和甲醇燃料也都开始减少。人们不愿意接受甲醇汽油的根本原因是其暴露出的诸多缺点,包括:甲醇有毒,易造成人员伤害,严重时可导致失明甚至致命;腐蚀性强,短时间难以察觉,缩短汽车使用寿命;热值只有汽油的一半,限制了车辆的行驶距离;甲醇汽油冬季冷启动困难,而夏季又易发生"气阻"现象;甲醇汽车尾气中甲醛等非常规排放远高于普通汽油,而甲醛为强致癌物质。同时经济上失去竞争力也加速了甲醇汽油的衰退。根据对国外甲醇汽油发展过程的调查和分析研究,建议中国应禁止使用甲醇汽油;即使要强行使用甲醇汽油,也应做好各方面的充分准备。实际上,在中国推行甲醇汽油,最终受益的将是中东和新西兰甲醇生产商,而非中国甲醇行业。  相似文献   

14.
The study investigated the combustion and emissions of a gasoline engine using ethanol–gasoline blends. The results indicated that the peak cylinder pressure of E10 is evidently lower, but that of E20 is identical to that of gasoline. At lower engine loads, the combustion velocity of gasoline is faster, and the peak heat release rate (HRR) is higher than that of the blends, but at higher engine loads, E20 shows faster combustion velocity and a little higher peak HRR. The brake thermal efficiency of the blends is almost similar to that of gasoline, but the brake-specific fuel consumption of the blends is slightly higher. With the increase in ethanol content in the blends, CO evidently decreases, HC slightly increases at high engine loads, and NOx depends on the engine operating conditions as well as the ethanol content. The acetaldehyde of the blends is evidently and the ethanol is slightly higher than that of gasoline.  相似文献   

15.
无铅汽油的广泛使用,使得汽车排放物中有害物质苯的数量有所增加。为了解汽油燃烧过程中苯的生成规律,选用93#汽油、基础油和适当比例的添加剂为试验燃料,在定容燃烧弹上进行了一系列试验研究,利用气相色谱仪分析得到苯的排放量。试验结果表明,燃烧产物中的苯源于未完全燃烧的燃油,燃烧过程中裂解出的小分子自由基也会形成苯,在燃料中添加乙醇后,苯的排放量并不一定增加。  相似文献   

16.
催化汽油质量升级方案比较   总被引:1,自引:0,他引:1  
结合某炼油厂汽油调合组分现状,提出两种汽油质量升级方案,即:催化汽油只进行加氢脱硫处理(方案一),以及在方案一的基础上增设轻汽油醚化部分(方案二)。确定以Axens公司的Prime-G+技术作为方案一选用的催化汽油加氢脱硫技术,以CDTECH公司的醚化技术作为方案二选用的醚化工艺。调合结果显示,采用方案一,全厂汽油平均硫含量为18.95g/g,可全部生产京Ⅳ或欧Ⅳ标准汽油。但加氢脱硫处理造成辛烷值损失,致使97号京Ⅳ标准汽油产量仅为6.61×104t/a,约占汽油总产量的3.73%。经方案二处理后,全厂汽油调合性质同样满足京Ⅳ或欧Ⅳ标准要求,且97号京Ⅳ标准汽油产率由方案一的3.73%提高至22.64%。公用工程方面,方案二的循环水、1.0MPa蒸汽耗量远高于方案一,其能耗(1524.56MJ/t原料)是方案一能耗(745.12MJ/t原料)的约2倍,总投资也高于方案一。但方案二每年可消耗5.47×104t甲醇,将这部分价格较低的甲醇通过醚化转化为高附加值的汽油产品,按目前价格计算,每吨甲醇可升值约4000元。项目实施后,财务内部收益率(税后)、吨油净利润分别达到30.81%和103.60元/t,远高于方案一的8.80%和13.86元/t。综合比较,确定该厂催化汽油升级方案采用方案二。  相似文献   

17.
生产低硫、低烯烃和高辛烷值的清洁汽油是能源经济可持续发展的必然要求。我国于2011年在全国范围内实施《轻型车污染物排放限值及测量方法(中国Ⅳ阶段)》标准,要求汽油中烯烃体积分数不大于18%,芳烃体积分数不大于35%,硫含量不大于50μg/g。我国成品汽油约80%来自流化催化裂化(FCC)汽油,FCC汽油中的硫含量占汽油中硫含量的90%左右,FCC汽油具有较高的烯烃含量(质量分数为30%~55%)和较高的硫含量(150~1500μg/g)。FCC汽油中的硫主要以噻吩和噻吩衍生物等硫化物的形式存在。分析FCC汽油馏分中烃类组成对汽油辛烷值的贡献,以及硫化物分布情况;从热力学角度对氢转移、异构化和芳烃生成等反应发生的可能性及结果进行初步预测。建议在深度脱硫的前提下,更多地保留高辛烷值的烯烃组分,并使烯烃高选择性地向芳烃转化,以维持产品汽油的辛烷值。  相似文献   

18.
The purpose of this study is to experimentally investigate the performance, combustion and pollutant emissions of a multipoint electronic fuel injection gasoline engine using methanol–gasoline blends. The results indicated that, with the increase in methanol (CH3OH) content in the blends, the maximum engine torque and power are slightly decreased, the brake specific fuel consumption is evidently increased and brake thermal efficiency remains almost identical. At low engine loads and speeds, gasoline is observed to have faster combustion velocity, but the blends are faster at high engine loads and speeds. The carbon monoxide of the blends is slightly lower, hydrocarbon is slightly higher at high engine loads and nitrogen oxide is lower for M10 at low engine loads. The emissions of formaldehyde are evidently higher with the increase in CH3OH content, but CH3OH and acetaldehyde emissions of the blends show little variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号