首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The backscattered electron (BSE) signal in the scanning electron microscope (SEM) can be used in two different ways. The first is to give a BSE image from an area that is defined by the scanning of the electron beam (EB) over the surface of the specimen. The second is to use an array of small BSE detectors to give an electron backscattering pattern (EBSP) with crystallographic information from a single point. It is also possible to utilize the EBSP detector and computer-control system to give an image from an area on the specimen--for example, to show the orientations of the grains in a polycrystalline sample ("grain orientation imaging"). Some further possibilities based on some other ways for analyzing the output from an EBSP detector array, are described.  相似文献   

2.
A simple, low-investment device has been developed that allows the collection of backscattered electrons (BSEs) and specimen current (SC) signals for imaging purposes and current measurement. Originally, this system was designed for detection, measurement, and display of specimen current, with a video signal output whose level was modulated by this current. Eventually, a BSE detector was developed, using a graphite disk (about 8 cm in diameter) to collect the BSEs. The disk was mounted on a Philips SEM 5O5, attached and concentrically to the final lens aperture. This configuration gives a large solid angle of collection. The collected charge is further processed by the same electronics used in the aforementioned SC detection system. Electron channeling, topographic contrast with BSE, and material contrast with BSE and SC images can be obtained with reasonably good edge definition.  相似文献   

3.
In environmental scanning electron microscopy applications in the kPa regime are of increasing interest for the investigation of wet and biological samples, because neither sample preparation nor extensive cooling are necessary. Unfortunately, the applications are limited by poor image quality. In this work the image quality at high pressures of a FEI Quanta 600 (field emission gun) and a FEI Quanta 200 (thermionic gun) is greatly improved by optimizing the pressure limiting system and the secondary electron (SE) detection system. The scattering of the primary electron beam strongly increases with pressure and thus the image quality vanishes. The key to high‐image quality at high pressures is to reduce scattering as far as possible while maintaining ideal operation conditions for the SE‐detector. The amount of scattering is reduced by reducing both the additional stagnation gas thickness (aSGT) and the environmental distance (ED). A new aperture holder is presented that significantly reduces the aSGT while maintaining the same field‐of‐view (FOV) as the original design. With this aperture holder it is also possible to make the aSGT even smaller at the expense of a smaller FOV. A new blade‐shaped SE‐detector is presented yielding better image quality than usual flat SE‐detectors. The electrode of the new SE detector is positioned on the sample table, which allows the SE‐detector to operate at ideal conditions regardless of pressure and ED.  相似文献   

4.
A scanning electron microscope (SEM) is a multifunctional instrument for the measurement of topographic relief on the surface of bulk specimen images. This instrument is also available to detect the physical effects induced by an electron beam into subsurface layers. Space distribution of the physical properties of measured effects in the relative microrelief is a very important problem in the SEM. We describe a method of displaying specimen information in the SEM using the color cathodoluminescence (CCL-SEM) technique nondistorted by relief influence and CCL-SEM images with composite (color and black / white ) contrast using CCL+BSEmode.  相似文献   

5.
Backscattered electron (BSE) imaging was used to study ultrafine TiO2 crystals distribution in a test cream. The cream was fast frozen, cryofractured and observed uncoated at low temperature. The BSE detector was a microchannel plate. The results demonstrate that up-to-date photoprotective preparations can be investigated by this technique.  相似文献   

6.
High-resolution backscatter electron imaging of colloidal gold in LVSEM   总被引:1,自引:0,他引:1  
High‐resolution backscatter electron (BSE) imaging of colloidal gold can be accomplished at low voltage using in‐lens or below‐the‐lens FESEMs equipped with either Autrata‐modified yttrium aluminium garnet (YAG) scintillators doped with cerium, or with BSE to secondary electron (SE) conversion plates. The threshold for BSE detection of colloidal gold was 1.8 keV for the YAG detector, and the BSE/SE conversion was sensitive down to 1 keV. Gold particles (6, 12 and 18 nm) have an atomic number of 79 and were clearly distinguished at 500 000× by materials contrast and easily discriminated from cell surfaces coated with platinum with an atomic number of 78. BSE imaging was relatively insensitive to charging, and build up of carbon contamination on the specimen was transparent to the higher energy BSE.  相似文献   

7.
Dale E. Newbury 《Scanning》1996,18(7):474-482
The gaseous secondary electron detector (GSED) in the environmental scanning electron microscope (ESEM) permits collection of electron signals from deep inside blind holes in both conducting and insulating materials. The placement of the GSED as the final pressure-limiting aperture of the ESEM creates a situation of apparent illumination along the line of sight of the observer. In principle, any point struck by the primary beam can be imaged. Image quality depends on the depth of the hole. In brass, features at the bottom of a 1.5 mm diameter hole that was 8 mm deep were successfully imaged.  相似文献   

8.
Experimentally, scintillator detectors used in scanning electron microscopy (SEM) to record backscattered electrons (BSE) show a noticeable difference in detection efficiency in different parts of their active zones due to light losses transport in the optical part of the detector. A model is proposed that calculates the local efficiency of the active parts of scintillator detectors of arbitrary shapes. The results of these calculations for various designs are presented.  相似文献   

9.
The ElectroScan environmental scanning electron microscope (ESEM) enables wet samples to be observed by eliminating air but allowing water vapour into the sample chamber. However, evaporation from, and condensation on, the sample may occur during the pumpdown sequence used to reach this state, which means that the sample may not be in its natural state when viewed if due care is not taken. In this paper, the pumping system of the ESEM is described mathematically and expressions are derived for the evaporation and condensation. This treatment is then used to calculate the optimum pumpdown sequence. The importance of using the optimized procedure is illustrated by micrographs of fat emulsions.  相似文献   

10.
A novel secondary electron detection system combining a two‐stage detector head and a differential pumping system is presented. The detector head consisted of a scintillation Everhart‐Thornley detector and a microsphere plate, separating it from the lower vacuum in the intermediate chamber (below 0.1 mbar). The system was arranged asymmetrically, which should contribute to a lower gas leakage through the plate and a longer life span of the plate. The system offered all the advantages of the scintillator detector in a wide range of gas pressures, from high vacuum to those of the order of 10 mbar, typical of high‐pressure scanning electron microscopy.  相似文献   

11.
The purpose of this paper is to find some general rules for the design of robust scintillation electron detectors for a scanning electron microscope (SEM) that possesses an efficient light-guiding (LG) system. The paper offers some general instructions on how to avoid the improper design of highly inefficient LG configurations of the detectors. Attention was paid to the relevant optical properties of the scintillator, light guide, and other components used in the LG part of the scintillation detector. Utilizing the optical properties of the detector components, 3D Monte Carlo (MC) simulations of photon transport efficiency in the simple scintillation detector configurations were performed using the computer application called SCIUNI to assess shapes and dimensions of the LG part of the detector. The results of the simulation of both base-guided signal (BGS) configurations for SE detection and edge-guided signal (EGS) configurations for BSE detection are presented. It is demonstrated that the BGS configuration with a matted disc scintillator exit side connected to the cylindrical light guide without optical cement is almost always a sufficiently efficient system with a mean LG efficiency of about 20%. It is simulated that poorly designed EGS strip configurations have an extremely low mean LG efficiency of only 0.01%, which can significantly reduce detector performance. On the other hand, no simple nonoptimized EGS configuration with a light guide widening to a circular or square profile, with a polished cemented scintillator and with an indispensable hole in it has a mean LG efficiency lower than 6.5%.  相似文献   

12.
M. E. Taylor  S. A. Wight 《Scanning》1996,18(7):483-489
A device has been developed and used successfully on two models of the environmental scanning electron microscope that allows low-magnification imaging of about 30x, significantly better than the original 200x low-magnification imaging limit. This was achieved by using an additional aperture to limit the pressure at a point where it will not block the electron beam, and a larger aperture plate for the combination final aperture/secondary electron signal collection surface that also does not block the electron beam significantly.  相似文献   

13.
The gas density of argon along the axis of a pressure-limiting aperture in an environmental scanning electron microscope is found by the direct simulation Monte Carlo method. The aperture is made on a thin material plate, producing the sharpest possible transition region between the specimen chamber and the differentially pumped region downstream of the gas flow. The entire regime from free molecule to continuum flow has been studied, which covers any size of aperture diameter and any pressure from vacuum to one atmosphere. The amount of electron beam transmitted without scattering at any point along the aperture axis is found in the range of accelerating voltage between 1 and 30 kV for argon. The electron beam transmission is further computed for helium, neon, hydrogen, oxygen, nitrogen and water vapour. This study constitutes the basis for the design and construction of an environmental scanning electron microscope having an optimum electron beam transfer, which is the primary requirement for an optimum performance instrument.  相似文献   

14.
T Agemura  S Fukuhara  H Todokoro 《Scanning》2001,23(6):403-409
A measurement technique for incident electron current in secondary electron (SE) detectors, especially the Everhart-Thornley (ET) detector, based on signal-to-noise ratio (SNR), which uses the histogram of a digital scanning electron microscope (SEM) image, is described. In this technique, primary electrons are directly incident on the ET detector. This technique for measuring the correlation between incident electron current and SNR is applicable to the other SE detectors. This correlation was applied to estimate the efficiency of the ET detector itself, to evaluate SEM image quality, and to measure the geometric SE collection efficiency and the SE yield. It was found that the geometric SE collection efficiency at each of the upper and lower detectors of a Hitachi S-4500 SEM was greater than 0.78 at all working distances.  相似文献   

15.
The construction of high signal-to-noise, artefact-free secondary electron images in the elevated pressure conditions of an environmental SEM is a nontrivial process. The interactions of information carrying species, as well as probe beam electrons, with the chamber gas are the major reasons for such complications. In this paper, we discuss and review the present understanding of these phenomena. In addition, we outline procedures for assessing the signal-amplifying and charge-neutralising capabilities of an environmental gas. It is only with a knowledge of such parameters and an appreciation of the gas-electron collision processes that one can optimise the microscope's operating parameters. Moreover, such information enables the separation of topographic detail from artefactual features in the detected electron images.  相似文献   

16.
Oho E  Suzuki K  Yamazaki S 《Scanning》2007,29(5):225-229
The quality of the image signal obtained from the environmental secondary electron detector (ESED) employed in a variable pressure (VP) SEM can be dramatically improved by using helium gas. The signal-to-noise ratio (SNR) increases gradually in the range of the pressures that can be used in our modified SEM. This method is especially useful in low-voltage VP SEM as well as in a variety of SEM operating conditions, because helium gas can more or less maintain the amount of unscattered primary electrons. In order to measure the SNR precisely, a digital scan generator system for obtaining two images with identical views is employed as a precondition.  相似文献   

17.
Integrated array tomography combines fluorescence and electron imaging of ultrathin sections in one microscope, and enables accurate high‐resolution correlation of fluorescent proteins to cell organelles and membranes. Large numbers of serial sections can be imaged sequentially to produce aligned volumes from both imaging modalities, thus producing enormous amounts of data that must be handled and processed using novel techniques. Here, we present a scheme for automated detection of fluorescent cells within thin resin sections, which could then be used to drive automated electron image acquisition from target regions via ‘smart tracking’. The aim of this work is to aid in optimization of the data acquisition process through automation, freeing the operator to work on other tasks and speeding up the process, while reducing data rates by only acquiring images from regions of interest. This new method is shown to be robust against noise and able to deal with regions of low fluorescence.  相似文献   

18.
Imaging and characterization of engineered nanoparticles (ENPs) in water, soils, sediment and food matrices is very important for research into the risks of ENPs to consumers and the environment. However, these analyses pose a significant challenge as most existing techniques require some form of sample manipulation prior to imaging and characterization, which can result in changes in the ENPs in a sample and in the introduction of analytical artefacts. This study therefore explored the application of a newly designed instrument, the atmospheric scanning electron microscope (ASEM), which allows the direct characterization of ENPs in liquid matrices and which therefore overcomes some of the limitations associated with existing imaging methods. ASEM was used to characterize the size distribution of a range of ENPs in a selection of environmental and food matrices, including supernatant of natural sediment, test medium used in ecotoxicology studies, bovine serum albumin and tomato soup under atmospheric conditions. The obtained imaging results were compared to results obtained using conventional imaging by transmission electron microscope (TEM) and SEM as well as to size distribution data derived from nanoparticle tracking analysis (NTA). ASEM analysis was found to be a complementary technique to existing methods that is able to visualize ENPs in complex liquid matrices and to provide ENP size information without extensive sample preparation. ASEM images can detect ENPs in liquids down to 30 nm and to a level of 1 mg L?1 (9×108 particles mL?1, 50 nm Au ENPs). The results indicate ASEM is a highly complementary method to existing approaches for analyzing ENPs in complex media and that its use will allow those studying to study ENP behavior in situ, something that is currently extremely challenging to do.  相似文献   

19.
20.
Zobacová J  Frank L 《Scanning》2003,25(3):150-156
This paper concerns the problems connected with the observation of a nonconductive specimen in a scanning electron microscope (SEM) when incident electrons create a surface charge and a corresponding electric field. The special configuration of the cathode lens enables one to control the landing energy of primary electrons via the specimen bias. In the cathode lens, the accelerating electric field at the surface of the specimen combines itself with that of the surface charge in influencing the trajectories of the signal electrons and hence the detected signal level and the possible recapturing of slow secondaries. Recaptured electrons reduce the ultimate positive surface potential, which arises when working below the higher critical energy of electron impact. Computer simulations of electron trajectories were performed for the typical cathode lens configuration and for a model specimen characterized by emission yields similar to those for glass. The simulations brought an extensive set of data about the trajectories of both secondary and backscattered electrons. Furthermore, the data were processed in order to assess the charge balance between the emitted and recaptured electrons as well as the collection efficiency of the detector. The results include values of the ultimate positive surface potential and the detected signal level, both in dependence on the initial energy of the electron impact and the size of the field of view. Finally, the method for the determination of critical energy is reevaluated. This is based on the measurement of the time dependence of the detected signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号